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X-Ray Diffraction (XRD):

X-ray diffraction techniques are a family of non-destructive techesguvhich reveal
information about the crystallographic structured aphysical properties of material$hese
techniques are based on observing the scatteredsityt of an X-ray beam hitting a sample as a
function of incident and scattered angles, or wavgth or energy.

X-Ray Diffraction (XRD) is a technique used to cheterize the crystallographic structure,
crystallite size (grain size), andreferred orientation in polycrystalline materials. XRD is
commonly used to identify structure of unknown dabees (phase analysis).

XRD is one of the most commonly used methods terdahe theresidual stress staten small
crystalline volumes.
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Hours of lessons:

25th may

26th may

27th may
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Why using X-Ray ?

Enprcin g
y. - -N,, & ;
e Optical : refractive index, transparency, - - ey
opacity - PEE

e Mechanical: strength, scratch

e Commercial : design

- Coatings or thin films for :

-Wear resistance (or scratch resistant)
-Protection from UV rays

-Hydrophobic (designed to ease cleaning)
-Anti-reflective (eyes more visible, reduces glarg, .. vaagese i e 3T
-Color changes T
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Explore the uses of the chemical elerments through this periodic table
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ﬂroperties of copper:

electrical properties:

mechanical properties
elastic properties

plastic properties
A%
flow stress
max stress
hardness

—>Example of Annealed copper

\ curved tube

VS

N

E=120 GPa, v=0.345

range

range
range
range
range

copper

rigid straight tube
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Scanning Electron Microsopy

. Ti-K Zoom

 In-L Zoon = . O-E Loom
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Amorphous silica

Glass: SiO2

Crystalline Si0O

P.O.R.

2D

To « see » how atoms are arranged ?
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Carbon
graphite diamond

hexagonal

Same element BUT different arrangement, i.e. differgrdtalline structure

Black No color

opague Transparent
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C,H, O

alcohol Ether-oxide

2C,6H,10

Alcohol Ether-oxide

Same elements BUT different arrangement, i.e. diffdnenlings
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Single Crystal:
Periodic 3D repetition
of unit cells to fill the
entire volume
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Polycrystal:
Constituted of grain
with different
orientations

2500 -
_ 2000 -
e
2
g els Glassy Alloys o
B —>High yield strength, fracture toughness
§ 1000 - Tithni
& nium >High elastic strain limit (2%)
lloys
500 -
pSilica  Wood Falymers
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0 1 2 3
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Elastic Limit )
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To study a given specimen:
- we have to « see » it or, in other words, to observe tiphoton interaction with
the matter of the specimen.

View of the spectrum of electromagnetic waves
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To study a given specimen:

- we may observe the x-ray photon interaction with thematter of the specimen.

Incident
X-ray photon
E (or 1)

_

P.O.R.

X-ray photon
E (or 1)

-~

X-ray photon

~

with smaller E (orA)

N

o

-fluorescence
-compton
-phonon,...

Electron
-Auger,...

/




X-ray diffraction:
A few applications to microstructural
thin film analysis

Obijective: The objective of this lecture is to provide the minimum
background to understand a few examples of x-ray diffraction analysis
- X-ray Stress Analysis (XSA)

1) microstructural analysis: -> phase analysis
—> texture measurement and analysis
—> grain size and microdistortion analysis

2) analysis of residual stresses — measurement of applied or residual strains:
- monocrystalline films
—> polycrystalline films : —> quasi-isotropic thin films (simplest case)
—> fibre textured thin films (actual case)
P.O.R. 16



Basic fundamental of x-ray diffraction

o Texture analysis (simple case)

e Grain size - microdistortions

o Elasticity

o X-ray strain measurements- Stress analysis

P.O.R.
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What is a thin film or a coating In
this lecture ?

- thin film (a few pm >thickness> 10 nm)

—> substrate (thickness>> thin film)

—->Personal Research Areas :

- Thin film
- Metallic materials

P.O.R. 18



What is a thin film or a coating In
this lecture ?

- thin film (a few pm >thickness> 10 nm)

—> substrate (thickness>> thin film)

Elaboration:

-physical vapor deposition (thermal, ion beam sputtering,..)
-chemical vapor deposition

-electrodeposition

-oxidation, ....

The microstructure of thin films depends on the experimental conditions
of elaboration. X-ray diffraction is a powerful non destructive method
used to study the microstructure (phase analysis, texture, grain size),

the residual stress state, the mechanical properties, ...

P.O.R. 19



Thin films have a wide range of applications: electrical, magnetical, optical,
corrosion, mechanical properties.

P.O.R.
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Read-Out
SP Layer Electrode

Flexible substrates:

Au (20 nm)
Ni (120 nm
[ Ti/W (15 nin)
InSb
Gold - anti-oxidization
Nickel - Wetting
Ti/W - anti-diffusion

P.O.R. 21



Coatings or thin films for :

-Wear resistance (or scratch resistant)
-Protection from UV rays
-Hydrophobic (designed to ease cleaning)

-Anti-reflective (eyes more visible, reduces glarg, ..

-Color changes

EvVisionitol

P.O.R.

Safaty Froducks

TS
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Thin films have a wide range of applications: electrical, magnetical, optical,
corrosion, mechanical properties. >Why studying the microstructure ?

* Microstructure contains far more than qualitative descriptions (images) of cross-

I (T /
~—_ S~

-Telaboration/Tf
-Speed growth

-Working Pressure
-electrolyte, etc...

« Most properties are anisotropic which means that it is critically important for
guantitative characterization to include orientation information (texture).

» Lot of properties are size dependent (ex: mechanical properties such as
hardness, yield stress,...; optical properties; electronical properties, magnetic
properties)

 Many properties can be modeled with simple relationships, although numerical
implementations are always necessary.

P.O.R.
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Optical anisotropy :

Example of cordeirite (rocks)

Orthorhombic (a,b,c)
Darkest blue

Medium blue

Pale stone - colorless

P.O.R. 24



Example of thin film microstructures: Scanning electronic microscopy
Cross sections

et i
SE 123 Dopht WO our verre

Delaminations® stress ?
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What is the informations in a Bragg peak ?

| 26) "« Position
[ ‘}, | < elIntensity
=] ] | |
) - G\ + Shape-> FWHM
| | L
I it

0 26

Phase analysis (peak positions)

Texture analysis (variation of peak intensity)

Grain size — microdistortions (peak shape)

X-ray Strain or Stress analysis (shift of peak position)

P.O.R. 26



XRD can be used to determine

Phase Composition of a Sample

— Quantitative Phase Analysis: determine the relative amounts of phases
In a mixture by referencing the relative peak intensities

Unit cell lattice parameters and Bravais lattice symmetry
— Index peak positions

— Lattice parameters can vary as a function of, and therefore give you
information about, alloying, doping, solid solutions, strains, etc.

Residual Strain or stress (macrostrain)
Crystal Structure
— By Rietveld refinement of the entire diffraction pattern
Epitaxy (thin film)/Texture (preferred orientation)/Orientation (single crystal)
Crystallite Size and Microstrain
— Indicated by peak broadening

— Other defects (stacking faults, etc.) can be measured by analysis of
peak shapes and peak width

- in-situ capabilities, too (evaluate all properties above as a function of time,

P.O.R.

temperature, gas environment, or mechanical tests)
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Fundamental of x-ray diffraction

P.O.R.

-basics of crystallography
-basics of x-ray diffraction

28



Crystallography

QOutline: Lattice
Points lines, planes
Crystal systems
Primitive and non-primitive cells
Reciprocal Lattice

e Crystal (or single crystal): A solid composed of atoms,
molecules arranged in a pattern periodic in three
dimensions

» Polycrystals: Solids consisting of many contiguous
crystals (or grains or crystallites)
o Lattice: Three dimensional array of points (lattice

points), each of which has identical surroundings.
Mathematically Lattices can extend to infinity

A point lattice.

P.O.R. 29



Unit cell:

Crystallography

Defined by three independent translation

vectors a,b and c in a right-handed sense. Different
translations of the form 1 =ua+vb+wc will reproduce
the whole structure. Primitive cell is a unit cell

which contains only one atom per cell.
- FCC example....

Directions: The direction of a line can be

determined by drawing a line from the origin
parallel to the line and assigninga | = yq + Vb + WC

The line is then represented by the [uvw]

bracket. uvw is always converted to the smallest

integer number.

Negative directions are represented by a bar above

the number

Directions of a form: are the directions represented by

symmetry o -
[11d 111} |129 a1 = (113

P.O.R.
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A unit cell

) [233]

[100] 311 i
[001]

[100]

¢ 0101~ [120)

b 210]

110
@ [100]
[120]
Indices of directions
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Crystallography

If the axial lengths are a, b, ¢, then the planes make the intercepts of a/h, b/k, c/l. The
miller indices for the plane is (hkl), and the family of planes are {hkl}.

(119),(112) (112) (111) < {113

Planes can be represented by their normal vectors

'|meﬂfHNHl\llmllllll

(110)

’/%////////’ ,.

(102)

Wil \iiHHHN

aul

(110) (111)
Fig. 2-10 Miller indices of lattice planes. The distance d is the plane spacing.
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Crystallography

» There are 7 different kinds of unit cells that can
include all the possible lattice points (Crystal
Systems) i.e. cubic, tetragonal, orthorhombic,
rhomboedral, hexagonal, monoclinic, triclinic

 There are Fourteen Bravais Lattices. They are
categorized in terms of

- P primitive

- | Body Centered
- F Face centered
- AB,C Base centered

— R Rhombohedral

* Inthe following we will consider the simplest
forms of lattice, i.e. the cubic systems, which is
a common structure of a lot of metals and semi
conductors.

—>The interplanar spacing d,, for {hkl} depends on
the crystal system chosen. For cubic system:

d = a
hkl _‘Jh2+k2 +|2

P.O.R.
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Penrose tiling

- quasi-crystals

2D tilings

[ /] ]
[ /][]
[ /]
[ ]

Bravais lattices:

- crystals
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Beginnings of X-ray diffraction

e 1895 Discovery of X-ray by German physicist Rontgen - x-rays penetrate materials
opague to visible light-> radiographic analysis

e 1912 Von Laue shows that x-rays are diffracting by crystalline materials.

A few months later, Bragg derived a simple, elegant set of laws relating
diffracting phenomena to crystal structure
- beginning of radiocrystallography

P.O.R.
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eX-ray production:
X-rays may be produced by 2 fundamentally different methods:
1- the first method utilizes the fact that all electrically charged particles emit radiation during
rapid deceleration
2-the second method involves ionization.

One way to produce X-ray consists to bombard a material (anode) with accelerated electrons. If the
incoming electron is energetic enough, it can eject an electron from a K or 1s shell, and excite the atom
to a high energy state. The atoms then attains a lower energy state by filling this vacancy by an
electron from a higher energy shell (L or M). The difference between the electron energies of the K
shell and the higher energy shell is emitted in the form of characteristic x-rays during this process.

Electronic transition

d . .. Brilliance of the X-ray beams
causing emission of ( Bnotons 1 &1 mer? mraa®rd. 1% B )
characteristic radiation. | Dieaction i o
Electron energy levels :

i PESRF fulur
of Cu Generstin| ESRF (1005
T RoureR | o
LESHF (1008
/ Bremstrahlung: T
Peturces
E"‘v"' (]
1* genaration o
. ROUrGes a
® _
nucleus electron "
1900 1920 1940 1960 19803 2000
Yoar
- Decelaration of the incoming electron 35
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Excitation d’un atome
P.O.R.

E (keV)
A adsi
“gplz
M "“-.3:12
0.933 2p32
0.953 2pt2
1.100 2s'e
L
8.980 1512
K

Sealed tube

Désexcitation d’'un atome

Diagramme des premiéres raies X

Couche M
Kﬁ Kﬁ! Yy ¥ 3
% ¥ Couche L
Kﬁ K":
vy v ¥ Couche K

synchrotron source
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Example of sealed tube or rotating anode.

H20 In H20 Out

l T « Sealed X-ray tubes tend to operate at 0.9
to 2 kW,

* Rotating anode X-ray tubes produce
much more flux because they operate at 5
to 18 kW.

» Both sources generate X rays by striking
the anode target wth an electron beam
from a tungsten filament:

o AA— FILAMENT

(cathode)  The target must be water cooled. In a
\ s‘—meta' rotating anode the anode spins at a given
speed, helping to distribute heat over a
4—glass larger area and therefore allowing the
(vacuum) (vacuum) tube to be run at higher power without

melting the target.

 The target and filament must be contained
in a vacuum (because of e absorption)

A v
AC CURRENT

P.O.R. 37



—— Intensity of x-rays from copper
---- Linear absorption coefficient of nickel

K absorption
edge of nickel

6
Chara{cteristic
- radigtion
25 K Kg
S e
2 ,
S 4 H 2
g \ /25 kv~ \ Cal?tinuous rfldlation , E
[ 3 | ‘Pr premsstranttiig % |
= K, y /@\x< J/ !
> 1
© 2 :
< \\ !
/ / 15 kV— \ !
1 \\\\\ I
el 1 _Z
A / S — -
0 mlq‘ 5 k\A;/—\ 1 1
0.0 1.0 2.0 3.0 1.4 1.6
Ain A
/] - 12400 Ain A
min eV (a) No filter

rays: polychromatic background + several peaks with high intensity

©

Ain A
(b) With Ni filter

The most simple way to reduce the wavelength range, i.e. remove Kf(3 radiation.

A K line is produced if e is ejected from K shell and the L shell supplies e to it. But L shellhas 2 e

P.O

(with different spins) = 2 lines of different energies in Ka 2 Kal and Ka2. M shell 2 Kg
R.
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L~

Most of powder diffractometers use the so-called “Bragg-Brentano” geometry

In the B-B geometry, the incident- and diffractedxveslits move on a
circle that is centered on the sample. Divergerdys from the source
hit the sample at different points on its surfdaeting the diffraction
process the X rays are refocused at the detedtor sl

The B-B geometry provides the best combinatiomtdnsity, peak
shape, and angular resolution for the largest nummbgamples.

P.O.R.
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[ Diffraction angles }

X-ray detector

Normal to sample surface

p ¥
X-ray source
Q 9 The incident angle is defined as the angle betwleeiX-ray source and the sample
29 9 The diffracted angle is defined as the angle betviiee incident beam and the detector angle

P.O.R. 40



[ Diffraction angles ]

X-ray detector

Normal to sample surface

o/ ¢
.y
X-ray source

20

If Q=20/2(=6) -> symetric, classical theta/2theta scan
- the diffracting planes are // to the surface

P.O.R. 41



Intensity (a.u.)

P.O.R.

Typical diffractogram: theta/2theta scan

20 (degrees)

r_\_"J ._JlLﬂ_._;J ST
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Spectral Contamination in Diffraction Patterns

Kal

|

Ka?2

42 43 44 45 46 47 48 49
Two-Theta (deq)

P.O.R.

/ separated at high angles

n
* The Kal & Ka2 doublet will almost
always be present

— Very expensive optics can
remove the Ka2 line

_ Kal
— Kal & Ka2 overlap heavily at

low angles and are more

..........h.....’.k Ka?2

A

94 95 96

* W lines form as the tube ages: the
W filament contaminates the target
anode and becomes a new X-ray
source

W and K@ lines can be removed
with optics

43
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eMonochromatisation :

simplest case : use a filter - remove
kbeta radiation and a part of the background (see

former slide)

other cases: use one or several single

crystals as monochromator

LA -AE-pgeotgss

A E
« Good » single CrystalAANA~104

« bad » Single Crystal (exhibiting mosaicity :
ANA~102

Flux O integrated reflectivity

I{rel.)
e
e
e
1 (rel.}
T —

%

_ il

l’

-

<6700 69000> 67,000
26 (deg) 28 (deg)

69.000>

reflectivity

1,0

0,8

0,6

Y @E=8040eV

—e— Si111

—O— graphite
(mosaicité=0.4°)

-8 06 -04 -02 00 02 04 06 08

Incident angle theta-thetabragg (degree)
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Values of Wavelengths for some classical tubes

Copper Bearden Holzer et al. Cobalt Bearden Holzer et al.
Anodes (1967) (1997) Anodes (1967) (1997)

Cu Kal 1.54056A | 1.540598 A Co Kal 1.788965A | 1.789010 A
Cu Ka2 1.54439A | 1.544426 A Co Ka2 1.792850A | 1.792900 A
CuKp 1.39220A | 1.392250 A Co KB 1.62079A | 1.620830 A
Molybdenum Chromium

Anodes Anodes

Mo Kal 0.709300A | 0.709319 A Cr Ka1l 2.28970A | 2.289760 A
Mo Ka2 0.713590A | 0.713609 A Cr Ka2 2.293606A | 2.293663 A
Mo Kf 0.632288A | 0.632305 A Cr KB 2.08487A | 2.084920 A

Often quoted values from Cullity (1956) and Beardeey. Mod. Phys39 (1967) are incorrect.

Lot of XRD textbooks do not have the most recent v@ldélzer et al. (1997)

P.O.R.
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Whatever the wavelength, what happens for the x-ray poton?

X-ray photon interaction with matter:

-difference between scattering, diffraction and refration

Incident
X-ray photons
E (or A)

Incident
X-ray photons
With lot of
energies (i.e.
polychromaticA)

P.O.R.

v

X-ray photon

-~

X-ray photon

~

with smaller E (orA)

o

-fluorescence
-compton
-phonon,...

Electron
-Auger,...

/
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X-ray photon interaction with matter

scattering

Incident
X-ray photon
E (or 1)

A
Incoming plane ——- \
wave =
ﬁ
;—;>
—_
v

Ko

- The electrons interact with the oscillating elexfreld of the light wave.
- The electrons in an atom coherently scatter light.

e or a fewe- randomly distributed or atom

P.O.R. 48



X-ray photon interaction with matter

Incident
X-ray photon
E (orA)

Incoming plane ———

diffraction

Generally speaking, diffraction
occurs when each object in a

wave o o periodic array scatters radiation
> o coherently, producing concerted
—_— e O constructive interference at specific
2 ! ® angles.
— o Here, the object is the atom or

P.O.R.

molecule, and the radiation is
composed of x-ray photon.

Nice arrays of atoms = cristal

49



X-ray photon interaction with matter

refraction

Incident
X-ray photon
E (orA)

Incoming plane ———

62 "

wave —l—l-P
——
—
. 32

- Consequence of n<1, existence of a critical angleafbich there is a total external reflection

P.O.R. 50



Conclusion
The electrons interact with x-rays.

->diffraction may occur if the irradiated object is composed of a pkciarray of atoms or molecule

—>X-rays are also

reflected
scattered incoherently
refracted

absorbed or transmitted

P.O.R. 51



eAbsorption of X-rays:

x-rays are attenuated as they pass through matter, so that the transmitted beam is
weaker than the incident beam. Various processes contribute to this decrease : coherent
scattering, incoherent scattering, fluorescence, ...

d| Here: | is the transmitted beam intensity
o = dX M linear absorption coefficient (proportional to the
p‘ density p of the material). W/ p is the mass absorption
coefficient.
>[x k
For an homogeneous specimen of finite thickness x: lg |
X
_pdl_ _
ly = jT = lg.exp(px) = lg.expEp/ p.p.x) ||
0
For a specimen consisting of n substance, the mass absorption coefficient is:
n - . -
(%) =>w, (%) With w, the weight fractions of each substance
[

=1

P.O.R.
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eAbsorption of X-rays:

For an homogeneous specimen of finite thickness x:

\ 4
v

Let us define the penetration depth as : :—’S:é ]
Element | Density | Mass Penetration | Penet. Depth Penet. Depth (um)
(g/cm3 | absorption | depth (um) | (um) Reflection | Reflection geometry
coeff. geometry 50%
(cm2.g-1) 90% 20=40°
26=40°
Be 1.848 |15 3607 1420 428
Al 2.7 48.6 76.2 30 9
Si 2.33 60.6 70.8 28 8.4
Fe 7.874 | 308* 4.1 1.6 0.5
Cu 8.92 52.9 21.2 8.3 2.5
Au 19.3 208 2.5 1 0.3

P.O.R.

penetration depth for Cu Ka radiation
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The absorption is a function of the wavelength (or the energy):

radiation | AgKa | RhKa | MoKa [ CuKa [ NiKa |FeKa | CrKa

A (A) 0.5608 | 0.6147 | 0.7107 | 1.5418 | 1.6591 | 1.9373 | 2.2909
Au 63.1 80 115 208 250 365 532

_ 2Aka1t AKa2
3

Notes: this is for Ka radiations , i.e. the average of Kal+Ka2 is defined as: )\ Ko

eScattering of X-rays:

When an x-ray beam, containing x-ray photons of wavelength A, impinges on a
specimen, the photons collide with the fundamental particles (electrons and nuclei) making up
the specimen, and diffuse or scatter in all directions.

It is possible to have two types of collisions with the electrons:

—elastic . There is no momentum transfer between electron and photon.
Thus the scattered photon has the same energy after the collision as before. This is called the

coherent scattering.
- non elastic. There is some momentum transfered from the photon to

the electron. Thus the scattered photon will have a longer wavelength than the incident photon.
This incoherent scattering is usually called Compton scattering.

In both of the above processes electrons scatter the photons in all directions.
However, the intensity of the scattered beam depends on the scattering angle:

P.O.R.



e o Scattering from electron

If an unpolarized beam of intensity |,
impinges on a single electron, the total \X3
coherent scattering at a point P is given

C r
by the Thomson equation: ) 20

et [(1+cog20)| 5 lg[1+cos 20 E

=lq. . =rs.—.
e 0 e
r’m?c* 2 r? 2

m:electron mass, e: el. charge, c: light’s speed
r: length of vector to P, 28:angle between r and incident beam

-The last term is the polarization factor

-the factor 1/m ensures that for scattering from atoms the scattering from the nucleus can
be ignored. Indeed, M(proton or neutron) = 1836 x M(electron)

P.O.R.
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e ¢ Scattering from an atom

When the x-ray beam impinges on an atom, with atomic number Z, the total scattered
intensity to a point P will be slightly different. There will be Z scattered beam sources at different

positions around the atom. Thus Z rays will arrived at the point P away from the atom.

INTERACTION DES RAYONS ET DE LA MATIERE

f

However, the total scattered intensity at P, I, will 8
depend on the relative phases of the individual
rays. If all the beams are in phase, the total
intensity is Z2l,. If the beam from individual
electrons are out of phase by various amounts, a
certain amount of destructive interference will
take place.

ufr)

The term used to describe the total coherent
scattering from an atom to a point P is the atomic
scattering factor, f, which is defined as:

_amplitudeof wavescatteredby anatom
amplitudeof wavescatteredby anelectron

Electrons par A

Example (atom K, Z=19):
» electronical density
b) atomic scattering factor of ion K* _

Distance from atomic center (A)

P.O.R.
O Guinier (1968), radiocristallographie



e ¢ Scattering from an atom

In an atom, we have to consider the scattering from the cloud of electrons around the nucleus.

The nucleus is used as the origin of coordinates.
Then for each electrons we may define a distribution function p,(r) which gives the probability that
the electron should be contained in unit volume at the position defined by the vector r.

The scattering amplitude for the electron n can be written as:

frn (@) = [ pn (r)-exp2ing.r)dr

Then, for all electrons associated with an atom: p(r) = Z Pn (I’)
n

Then, we have the atomic scattering factor: | (C]) = jp (f).GXdZi qu.l')dr

—>The atomic scattering factor can be written as the Fourier transform of the cloud
of electron, i.e. the electron density function.
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e ¢ Scattering from an atom

12 1
L1 3
10 4 +— Lithium 3
; Beryllium 4
S Boron 5
g . . : Carbon 6
Nitrogen 7
7 Oxygen 8
6 - * ~— Fluorine 9
f Neon 10
Sk -— Sodium 11
4 xr
3+
0 B . . -
g » B ' sing .
e : — In
D T T T T T T T T T T A

0 0.1 02 03 04 05 06 07 08 0.9 1 1.1 2.2

—>The atomic scattering factor can be written as the Fourier transform of the cloud
of electron:

. scattering powerof atom
P.O.R. scattering powerof a singleelectron
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e o Scattering from planes of atoms

When the x-ray beam impinges on a crystalline material, all of the atoms will scatter x-
rays in all directions. However, the periodic distribution of atoms on planes may cause
constructive, or destructive, interference of the coherent component of the scattered radiation from
the individual atoms, depending on the spacing between the planes, and the wavelength of the
incident radiation.

If a parallel x-ray beam impinges on a crystal where the (hkl) planes are parallel to the surface, the
2 waves ABC and DEF will be in phase, and so mutually reinforce each other if the path difference
GEH is an integral multiple (n) of the radiation wavelength.

-Since GE=EH=d. sinb, A
constructive interference will incident beam C
occur when:

NA = 2d.sinB

Bragg’s law (1912)

A= 2dhk| SIinG

Scattered beam

.,
‘.,
»
g
o
‘e
e
.
0
0

0

Atomic planes
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® @ Scattering from planes of atoms (other approach)

When the x-ray beam impinges on an actual three dimensional crystalline material,
there are a very large number of atomic planes. Thus the large number of mutually reinforcing
beams causes appreciable diffracted intensity at the correct angles (Bragg angles).

Along directions that do not satisfy Bragg’s law, the scattered waves are out of phase,
resulting in destructive interference and no diffracted intensity.

The other, more satisfactory, way to think about diffraction from lattices is the method due to von Laue,
which does emphasise scattering from atoms and their constituent electrons and nuclei. The scattering
angle is 20. The planes of the crystal are characterised by the Fourier coefficients of the electron density
p(r) (for X-ray scattering) or of the interaction potential V(r) (for electron scattering). In either case we
can write the scattering agent in terms of a Fourier series based on the reciprocal lattice.

l.e. the other approach we have done for atoms can be employed for the
crystal, it consist to consider that the electron density of a crystal may be

| o) =501 ()3(r - 1) f‘

where p,(r) is the electron density associated with the atom centered at the vector r-r,.

>
&
o
P
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We have seen that scattering amplitudes of atoms may be expressed in terms of the Fourier transform

of a electron distribution in real space. p,(r) is the electron density associated with the atom centered at
the vector r-r,.

It is the same for the crystal. Let us define an unit cell (a,b,c) containing only one atom with an electron

distribution of p,(r) (for a sake of simplification = we will see later the changes induced by several atoms
. structure factor):

p(r)=po(r)> >3 8(r— (la+mb+nc))s(r)  s(r) is a shape function

| mn

- The scattering from planes of atoms is written as FT(density of electron)
To perform this calculatus, we need to define « the reciprocal lattice » or « the reciprocal space ».

The reciprocal lattice is difficult to comprehend from a physical standpoint. It is an imaginary construct
used for the convenience of crystallography.

The reciprocal lattice is just as 'real’ to the crystallographer or 'solid stater' as the real lattice, as it is the
natural space in which to discuss waves in lattices, and to enumerate the available states .
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/' Reciprocal space

The reciprocal space is defined by vectors a*,b*, ¢* such that (with V unit cell volume):

i bOe _bOe g
- a(b0o) RV, So that a*.b=a*.c=b*.c=b*.a=....=0
—_—
b = clha & = allb a.a*=b.b*=c.c*=1
vV \Y; ~

Then , the Fourier transform of a crystal gives:

F(u) =FTp(r)] = Fo(U)-lZZZ5(U — (ha* +kb* +lc*) ) S(u)

Thus, we have scattering intensities only at the reciprocal lattice points. The distribution of the
scattered intensities is described by S(u).

P.O.R.
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* NOTES ON RECIPROCAL SPACE
*The reciprocal space of the

& T & it reciprocal space is the real space
a I & o~ A e *The reciprocal space of a FCC
L7 O L o &—® . .
i crystal is a bcc structure.
P! 1Y e ¥ oY i N } .
i G . S & L & & *The reciprocal space of a BCC
crystal is a fcc structure.
W L7 =

34
TS

W

2 definitions:
— a.a*=1

a.a*=2m

1
B
Cubic crystal

a,

.—ﬁ b,=1/a, *The reciprocal space of a cubic

crystal structure is cubic

Reciprocal space

w1
LY

& b,=1/a, «— *The reciprocal space of tetragonal
crystal structure is tetragonal.

P.O.R. Real Reciprocal 63



« NOTES ON RECIPROCAL SPACE

Doubling the periodicity in real space produces twice as
many diffraction spots in reciprocal space.

This effect can be produced chemically with an ordered az
binary alloy. C 3 , A
: . : A
A doubling of the periodicity in real space will produce
half-order spots in reciprocal space.
O—e—0O |24
<
28,
b,=1/2a,
e O—©
b,=1/2a,
Real
Reciprocal

P.O.R. 64



eThe structure factor of a unit cell:

For the actual derivation of bragg’s law, the three-dimensional symmetry of the unit
cell has to be taken into account. Indeed, if Bragg’s law is not satisfied no diffraction can occur,
but in certain cases there is no diffracted intensity at angles predicted by Bragg's law. This effect
Is due to the particular positions of the atoms in the unit cell.

DEF=0.5 x ABC 1

lllustration:

-Consider a BC crystal.

-if the phase difference between the
rays 1 and 3is A

—>diffraction should occur

-But phase difference between 1 and
2 is 1/2xA. Thus, ray 2 will interfere
destructively with ray 1

- No diffracted intensity

AN “E G 0,

P.O.R. 65



eThe structure factor of a unit cell:

The total intensity diffracted by a given unit cell can be determined from the
summation of the waves from the individual atoms. If the scattering amplitude from the jth atom,
with fractionnal dimensionless coordinates uj, vj,wj, is fj, the relative intensity scattered by the unit
cell for a given reflection hkl is proportional to

N .
i N is the number of atoms
Fhk = ij-eXF(ZTU (h-uj + k-Vj + I-Wj)) present in the unit cell.
=1
Bravais lattice | Structure factor Reflections for NO Reflections
Simple Cubic | F=f All None
BCC F=f(1+exp(it(h+k+l)) (h+k+l) even (h+k+I) odd
FCC F=f[1+exp(it(h+k)+exp(it(h+)+exp(it(l+k)] | h,k,| unmixed h,k,I mixed

Examples of structure factors for selected lattices

The total scattered intensity is proportional to the square of the absolute value of FhkI:

2

N
| O \Fhkﬂz O ij.edeTu'(h.uj +kvj+ I.Wj)
=1
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-Monochromatic
-Polychromatic

Experimental utilization of Bragg'’s law

< The diffraction condition can be written as : S=S +A.r* where r, *=n(ha*+kb*+Ic*)

With n integer et hkl indices of the smallest hkl (first reciprocal node)
ethe incident beam has the propagation direction : vector S,

ethe diffracted beam has the propagation direction : vector S (situated in the plane defined by S,
and the normal to the diffracting planes (vector r,*)

e o the diffracted beam is such that: the angle &between plane and incident beam is the same the
between diffracted beam and planes.

e o this angle theta satisfied the Bragg’s law

e o Bragg e Laue
- - _»* . _* _ ok % _*
A =2dpy Sin@ S =9 + )\rhkl with "hkl = ha +kb +I¢C
SIA

20
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Example of diffractogram of a polycrystalline specimen :
I (26)
20008

cubic crystal - . L

0 \ T / 20

*The Ewald construction is a way to visualize thed.aondition that the change is
wavevector is a vector of the reciprocal lattidé=k’ — k, (or *=SA-S/A) where k= 1A
Is the magnitude of the incident wavevector.

£
prrd
5
o
L
-
o

o
\|J
Fand
L g
L

Ewald

a*I

A
g
¥

ps
A

W

N
un lqu-l.....
LELE R LR L LS.

&

Reciprocal space

POR Scattered intensity :if theta is a Bragg’s angle or if r* is a reciprocal space vector.

Bragg’s peak
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Intensity scattered by a small crystal:

-incident beam |

-the effect of absorption are negligible as the crystal is small.

-the crystal has the dimensions A, B, C where A=N_.a, B=N,.b, C=N_.c
-there is only one atom per unit cell (a,b,c) of atomic scattering factor f

The scattering wave is the sum of the Na.Nb.Nc waves of amplitude f.I.. If we use the complex
notation (as we have done for the scattering factor), the amplitude wave scattered by an atom
can be written as :

f.lcexpio) =f.lc.expE2in(hu+kv +lw))

Thus the intensity for the whole crystal is :

o NamINp-INg1 2
|=f<lg| >, 2. Y expF2im(hu+kv+Iw)
0 0 0
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. N-1 . _exp(2niNh) -1 _sintiNh
Using the fact that: %eXP(‘ZWh)- expCzrih) -1 - sinth

expEIT(N —1h)

| :fz_lgsinzrd\lah_sinzrd\lbk sin? TN

sin2 Th sin2 Tk sin2 Tl

If h,k,l are integers I=f2le2. N,2.N 2.N_2 exact condition of reflection. But if N, are large
numbers, the range where 1#0 is very small.
If we substitute: h-h+ €a
k — k + eb
.2
sin“ TiNe
f=—"1-—— | - I + SC

(rNe)?

We obtain a domain in the reciprocal
space where 1#0. The intensity is non
negligible if e<1/N.

- Thus if the size of the crystallite

decreases, the domain where 1#0 is
TiINE increasing. In other word, the FWHM
10 5 5 10 increases...
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Diffractometer geometry

X rotation

diffracted X-
Ray beam

detector )
' Q rotation

incident

20 rotation Ray beam

X-Ray source

Reflection geometry

Incoming XR £/

llllll..

.Illll"’

HEENN l..mll.lllll.

g

Each cone is characteristic of a given dhkl
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Intensity (a.u.)

P.O.R.

Typical diffractogram: theta/2theta scan

20 (degrees)

r_\_"J ._JlLﬂ_._;J ST

12



Incoming XR

P.O.R.
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73



e Intensity of diffracted lines for polycrystals:

From an experimental scan, we can
observed that the diffracted intensity is
not equal for each peak.

Why ?

| |

The relative diffracted intensities of Bragg peaks for a given diffraction pattern
are dependent on six parameters:

+ structure factor (previously discussed)

+ polarization factor

+ Lorentz factor

+ multiplicity

+ absorption factor

+ temperature factor.

P.O.R.
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ePolarization factor and Lorentz factor:

a) The polarization factor is a trigopnometric factor that is a function of 2theta, it described the
variation of scattered intensity with scattering angle (x-ray beam is an electromagnetic wave).
This correction has already be seen in thomson equation.

Obviously, the use of a monochromator is changing the polarization correction.

b) The Lorentz factor is a collection of trigonometric terms that describes the dependence of
the diffracted intensity (maximum or integrated) on the diffraction angle. There are different
factors that contribute to the Lorentz factor (the dependence of diffracted intensity from any
one crystallite, the diffracted intensity per unit length of the diffraction cone, the number of
grains which are oriented such that they can diffract at a given angle 2theta.

®The Lorentz factor and the polarization factor are usually combined together to form
the LP factor:

1+ cos 26 This relation is valid only for an unpolarized
L.P.=— 2 incident beam

sin“ 6.co<@
Lp = 1+ co< 20.co< 20 This relation is valid only for a polarized

incident beam, i.e. using a monochromator (&

2
1+cos"20 is the incident angle on the monochromator)
P.O.R. 7



e Multiplicity factor:

this term describes the number of equivalent planes that can diffract at a given Bragg
angles. For example, for a cubic crystal all eight members of the {111} family have the same d
spacing and any grains in which one of these planes satisfy the Bragg conditions diffract at the
same angle.

Ex: cubic crystal,
m=6 for {100}, m=12 for {110},

e Temperature factor:

Atoms vibrate around their mean positions, with an average displacement that is
proportional to the temperature. This displacement is approximately 5-10% of the atomic spacing
at room temperature and increases with increasing temperature.

The values of atomic scattering factor f do not include a vibration term and must be
corrected for the temperature effect: f(T)=f.exp(-Bsin20/A?) where B is a constant related to the
atomic displacement and are tabulated.

This affects constructive interference and the total diffracted intensity decreases.
These decreases are especially noticeable at high 2theta angles.
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e Absorption factor:
Relatived diffracted intensities may also be affected by absorption, which

is directly related to the path length the incident and diffracted beams traverse in the
specimen for a given geometry.

a The total energy reaching a layer of length | and
thickness dz, located at depth z, is proportional to alO .

z N \/ exp(-u. distance) where a is the fraction of incident
\

N energy by unit volume.

A
v

If a is the volume fraction of crystallites that can diffract at this angles:

g ab.l 1 1
dlqiee = .expuz + dz
aift. sina PCH (sina sinB])

In some experiment, an additional rotation can be added, inclinaison ), and the substitutions
have to be performed in the above equation:

a=0+y anc B=0-yY

P.O.R. 77



The total diffracted intensity is obtained by integrating for a thin film of thickness z:

Z
it . = [dlgist
z=0

The diffracted intensity recorded at a distance r from the specimen is (for small
crystallites and isotropic texture (random distribution of crystallite)):

P.O.R.

N F2n-1 DW.dV

2 1+ cos 20 1
V2

'16nrsin26cose

*dI intensity by unit length of diffraction line recded at the distance r from the specimen

*r 2=7;9x10%¢ cm?

*Polarisation factor and lorentz factor (for Deby&h8rrer geometry)

*Fhkl structure factor

*n multiplicity factor

*DW: Debye-Waller correction (or temperature factor)

*V: volume of the unit cell

*dV: volume of the powder specimen. If the absorptionwas negligible in the whole irradiated
volume V, dV can be replaced by V to obtain the total diracted intensity
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Difference between elect. diffraction and XRD: )\ — Zdhk| .Sine

XR ~5—10 keV 01.5A > 26 from 10°to “180°
el. ~ 100-200 keV 00.07 A > 20 from 0°to 10°

Radius of Ewald sphere : Reg=1/A T——> Res(XRay) << Reg(elect)

Sy/A
S/A

P.O.R. Specimen thickness 79




lllustration: Let us plot a circle for a radius (XRay)=1 and for a radius of 20 (Electron)

11
1,5

N oo ©

[ <))
|

® © © © ©o o

=

©
a

P.O.R.




Difference between elect. diffraction and XRD:

220 b 400 b
.
220 |
L]

-
(00 s 2200

TEM plane-view diffraction patterns of the compliant
structure (single crystal GaAs) . Index ‘b’ is for the
substrate and ‘I' for the layer

TEM plan view diffraction pattern (a) and image (b) of the 8.9 nm
thick Au film. In (a) the {111}, {200}, {220}, {311} rings are observed
at increasing diffraction angles, none of the ring have higher
intensities regions arranged in symmetric pattern (three-fold or four-
fold) showing no discernible texture.

P.O.R.

ED pattern of
polycrystalline gold. (face-
centered cubic lattice,
a=0.408 nm)




Difference between elect. diffraction and XRD:

220 b 400 b
]

220 1

. * "

000 ¢ 220

TEM
P.O.R. (100 keV)

If you are lucky !!

XRD
(~8 keV)
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Experimental applications of XRD:

Phase identification: relies mainly on the positions of the peaks on the diffractogram and to
some extent on the relative intensities of the peaks.

From the shapes of the peaks, additional and often valuable informations can be extracted.
The shape, particularly the width, of the peak is a measure of a distribution of d-spacing. For
example, this distribution results from ponctual defects (as vacancy, interstitials, impurities) or
defects such as dislocations.

Crystallite size can also cause peak broadening:

- The well known Scherrer equation may be used in some specific cases. Once
instrument effects have been excluded, the crystallite size is easily calculated as a function of
peak width, peak position and wavelength.

-More sophisticated methods takes not only the peak width into account but also
the shape of the peak. (ex: Williamson-Hall, Warren-Averback). Those methods are capable of
yielding both the crystallite size distribution and lattice microstrain. The Warren Averback
method is based on a Fourier deconvolution of the measured peaks and the instrument
broadening to obtain the true diffraction profile.

N.B.: The width of the peak is characterized by the ful | width at half maximum (FWHM). It is the simplest
way to interpret measure of peak width. However, there i s a second characterisation of peak width which
is integral breadth. Integral breadth is simply the area under the peak divided by the peak height (after
background removal). In other word, it is the width of a rectangle as high as the peak. The use of FWHM,
compared to integral breadth, can for example overestim ate the crystallite size.

P.O.R.



Phase identification:

Trtencitd (%)

1.1
=N {38.19,100.0)
Diffractogram for polycrystalline gold specimen:
A -> crystallographic structure (FCC)
—> lattice parameter a=0.4078 nm
a0 A
oA
G0
ann
i A (44 39 42 0)
Each cone is characteristic of a given dhkl
40
311
220 [77.58 31.4)
n (6459 28.5)
an A
124
- (BLT4H0 a0
j\ W8.154.5)
n e T T T T T T T T T T T T T le 250
20 35 40 45 A0 55 1] k] ] ] an 25 a0 k] ]

What about the relative intensity ?
P.O.R. 84



Typical database informations:

Pattern : 4-754 Radiation = 1.5405395 Quality : Hgh
A1 2t 1 f & !
35185 100 1 1 1
44 383 52 2 0 ]
Gold, syn J Gold B4 578 32 2 2 1]
77549 36 3 1 1
81724 12 2 2 2
95137 i3 4 a0 1]
110802 23 3 3 1
115264 22 4 2 1]
Laftice : Face-centered cukic Mol weight = 19597 135422 23 4 2 2
8.G.: Fm3m  (225) Volnme [CO] = E7 .85
& = 407560 x = 19253
O = 19300
Z= 4

COLOR : Yellow metalic

WELTIMG POINT @ 1061 .6-1063.2

SAMPLE ZOURCE OR LOCALITY | Sample purified at MBS, Gathershurg,
WD, USA and is about 99.957% Au.

TEMP. OF DATA COLLECTION : Pattern taken at 26 C.

ARALYEIS . Spectragraphic analysis (9:): 50001, Ca 0001, Ag
0.001¢7).

GEMERAL COMMENTS : Opague mineral optical data on specimen from
unzpecified localty: RRZRe=71 6, Disp =16, %HK100=53-55, Calor
wvalues= 354, 391, 727, Ref. IM& Commisszion on Ore Microscopy QOF.
CPTICAL DATA : B=0.366

P.O.R.



Phase identification: example of diffractogram

¢ Diffracted intensity

L TiC g
co-milled 4h ﬂ [ 21 phase J
co-milled 3h J\—JU L . b N B
co-milled 2h LAY |\ " el et s s S
iy

co-milled 1h

co-milled 30mn . - S - S . .
no milled | L Jlk | J\:A_l T ) A ”-.M— [92 phases }
25 35 45 55 65 75
20

—>Phase identification from the peak position and peak intensities
What about additional microstructural information ?

P.O.R. 86



C graphite -2H Ti TiC
hexagonal P63/mmc hexagonal P63/mmc FCC Fm3m
a=0,24704 nm a=0,29505 a=0,43274
¢=0,67244 nm ¢c=0,46826
radiation 0,1540598 nm
2th rel. Int. h k|l dhkl 2th rel. Int. hk]|l 2th rel. Int. [h [k ]l
26,38| 100 0] 0f 2 2,555| 35,09 25|1]0]0 35,907 80| 1|1|1
42.22] \ 2|1]0]0 2,341] 38,42 30|/0]0]2 41,71 100{ 2| 0|0
44,39 \ 6[(1|10]1 2,243| 40,17 100] 1| 0|1 60,45 60(2|2]0
50,45 \ 1]11]0]2 1,7262] 53,01 13]1|0]2 72,371 30[3]|1]1
54,54 \ 4(0(0[ 4 1,4753] 62,95 1111]1]0 76,141 1712]2]2
59,69 | 1[1(0}3 1,332| 70,66 11]1]0]3 90,8 10[ 4]/ 0|0
77,245 \ 31111]0 1,2776| 74,16 1]12{0]0 101,785 1313 3]|1
83,186 \ 3|11{1]2 1,2481] 76,22 911]1]2 105,502 2514| 2|0
86,826 \ 1]10]0|6 1,2324| 77,37 6]2|0]1 121,377 251 4]2]2
93,597 \ 1]12[0]1 1,1707] 82,29 1/0/0]|4 135,355 16]5|1]|1
|
co-milled 4h ﬂ
co-milled 3h J\_JU L B . X R
co-milled 2h N . ™y A
co-milled 1h A AN BN i R
co-milled 30mn . - e e
—C
no milled Jk Lo A | .
| I | | | |
25 35 45 355 65 5 -+
P.O.F | | | 87
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Different kinds of diffractogram: 2D detectors (example of ALS Berkeley USA beamline 11.3.1 and
7.3.3; Nobumichi Tamura, Sirine Fakra)

Each cone is characteristic of a given dhkl

Bend Magnet - 4 Crystal CCD

Source 1:1 Toroidal 1:limage  gj(111) camera
(250x40um) mirror at slits Monochromator

L

Elevation view

Sample
on scanning
XY stag§8

P.O.R.



Different kinds of diffractogram: 2D detectors

defpcf; d}r;rem.mgmp ='133;245¢' 1024
||T§§a dlmemrtﬁw mﬁmme]s‘, 6'11324«}% fﬂﬁ

E&GD‘E@ 0000000, 548 800

ﬁiaﬁﬁiéﬁgﬁl 083345 .
?aljaqime*'tme insec:  2.00000

|OBlack &'wWhite Linear |

:.p.":?’;r'iwme I i _’d‘l i” =

P.OR. Multilayer W/Cu period 24 nm (6 nm of W and 18 nm of Cu) total thickness 240 nm



Different kinds of diffractogram: 2D detectors Goudeau et al.

Transmission mode _
reflection mode

== _ texture
Continuous ring o1l N
amn
b ¢
: =z E== -'TJ
ia)
oA
Strong " |
texture
P
(c) =
Continuous ring
Eiil.ﬂ-rﬂ : RO s e 2D diffraction pattern of a SnO2 thin
taction imeges Husrating prefemred onentstion. {a) Periclass . . .
powder mmpresied in 2 dimmemd amedl ce=ll @ 25 GPa, reconded with an film depOSIted on gIaSS recorded in
imsge plate st APS { GSECARSY, compresdon aas is honzonial | Merk=] reflection mode. (Beam"ne 11.3.1 ALS

et al, HH2L. (b)) Golkl wire, mesured with & OCD detecior at ESEF
1L, (c) Fberrenfomed p-pobpropylene, mestined with a CCT
detector vt ESRFIDL {d) Fetal bons oonsisting of onenied hydro
vyapatle, mexsured st EYEF- IDM3 wath s 20488 OO Ddetector.

Berkeley).
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Different kinds of diffractogram: 2D detectors

Diffraction pattern of a W film

Diffraction pattern of w polycrystalline film

/ discontinuous diffraction rings Almost continuous ring
textured
e —_ - ™o b
Recorded in reflection mode at
: 16 keV (0.775 A), at a 100 pm
spatial resolution.
ALS beam line 7.3.3 N. Tamura, S. Fakra, & M.A Brown, ALS and Caltech

P.O.R. 91



Summary of x-ray diffraction:

4 ..
| (26) e Position

< elIntensity

e Shape-> FWHM

XRD is based on the assumption that XR radiation (with A on the order of A) can
elastically scatter of the electronic structure of a crystal. The periodicity of the
crystal will induce this scattering of the XR plane-wave to constructively interfere at
certain scattering directions while destructively interfering at other scattering
directions. The diffracted X-Rays are detected at a distance much larger than the
periodicity of the lattice, so that the diffraction can be approximated by the
Fraunhofer diffraction conditions. It has been shown that the diffraction conditions
are related to the Fourier transform of the electronic structure.
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What is the informations in a Bragg peak ?

| 26) "« Position
[ ‘}, | < elIntensity
=] ] | |
) - G\ + Shape-> FWHM
| | L
I it

0 26

Phase analysis (peak positions)

Texture analysis (variation of peak intensity)

Grain size — microdistortions (peak shape)

X-ray Strain or Stress analysis (shift of peak position)

P.O.R. 93



What is the crystallite size ? (DCEtgrain size) (Langford & bouer, . Appl. Cyst. 15, 20.1952)

Sphere

Cylinder

|

|

|l EF J| :

Ep | |

_ J
ggle. = 1.125 D

. . 05 T T | L) 1 1 T 1 ki

Fourier analysis -

0.4t

_ _ _ on
Weighted Diameters ~ 03
S
surface <D,> |
volume <D,> 0.1}
<zl)> <TA> l<DV>
T2 s 4 5 6 7 8 o

D (nm)

P.O.R.  (Krill, Birringer, Phil. Mag. 77, 621, 1998; Langford, Lougr, Scardi, J. Appl. Cryst. 33, 964, 2000) 94



XRD peak broadening is a function of the convolution of instrumental and microstructural
broadening (such as grain size, microstrain, strain gradients, dislocations,...)

1-Scherrer crystallite size:

K~0.9, 6 = Bragg angle

B: FWHM of the peak after correcting from instrumental
KA effects (broadening caused by the diffractometer).

Dg=——
B.cosOg

2 _p2 2
\‘ B = Bmea. ~ Binst.

In this equation, the broadening is due to the finite size of the crystallite. Indeed, for very small
crystals the intensity of x-rays at close to, but not exactly, the Bragg condition is not zero.

2-Separation of crystallite size and microstrain:

Some methods consist simply to write that the broadening is the sum of both size and microstrain:

= .+ .
B BSIZE Bmlcrostran

B :K—A +1.2.tand

D.co<d

BcosD 1 1

P.O.R.

B =n.2.tané

microstran

N microstrain

1 '
=—+n.d
95



3-Warren-Averback crystallite size and microstrain:

The warren averback method is based on a Fourier analysis of the diffraction peak. The measured
peak profile h(s) is actually the convolution of a function for the pure peak profile f(s) and a function
for the instrumental broadening g(s):

h(s)=g(s) * f(s)
This can also be represented by the product of the Fourier transforms for instrumental broadening:

FT(h)=FT(g) . FT(f)

FT(f) = +ZOZOA( L).cod2m(s—sg)L) + B(L).sin(2m(s - sy )L)
L =—0

Where A(L) and B(L) are the cosine and sine coefficients and L is the length of a column of unit
cells perpendicular to the diffracting planes. A plot of A(L) versus L is used to determine the area
weighted crystallite size La and lattice microstrain. If two peaks of the same plane family are used
in this analysis, the contribution of microstrain to peak broadening can be separated from the
crystallite size.

P.O.R. 96



y (2)

Examples of convolution : |

1)
sample |
¥ measure
On this picture, convolution of a lorentzian function \

(which can be assumed to represent the real sample ' i

intensity distribution) and a rectangle function results » - ;

(which can be assumed to represent the instrumental / / W\g\\\‘
R

intensity distribution).
Fa.
Iinstrum |4é
(1)

o8 200
: |
0.6 | 150
' '. 125
noa i
—J 9
i .
-1 0.5 0.5 1 15 2

The convolution of two gaussians is another gaussian:

FWH M\

—In black the measured intensity distribution - 0.00745
—In blue the instrumental - 0.00333
—In red the sample - 0.00666

P.O.R.



Fourier analysis:

A periodic function (with period a) can be decomposed into an infinite Fourier series of sine and
cosine terms:

+00
F(x)=Ag+2Y An.co{zmxj +B,, sin(zmxj
n=1 a a

In the case of x-ray analysis, the diffraction peaks is considered periodic : 2s,

= 1 3 = 1
2 08 A 2 0,
206 [ == i
<204 & o o
| B G N R 11\
e 029 03 0,31 0,32 0,33 0,34 0,35 0,36 0,37 0,38 0,05 0,03 -0,01 0,01 0,03 0,05
$=2sing/\ -SO $=2sin@/\ SO
0,9
» Gaussian -
5 071 FWHM =0,0094
g 05 \ — -_Calculatlon of An an_d Bn
5 03 N —8n <:| -instrumental corrections
g o1 - -plots of A, and B,, vs t=n/2s,
0179 50 100 150 200
t=n/2s0

the separation of these parts can be made if

E,> Information on crystallite size and microstrain,
P.O.R. several orders of a peak are studying. 93



e(Grain size evolution;
annealing effect =2 diffusion = grain growth (ex: 0. Proux et al.)

(a) (b)

- 400°C
z C | = a
L | = ~
400°C I :’L ::c-
- -

intensity (logarithmic scale - arb. unit.)
intensity (logarithmic scale - arb.

as deposited

I | | ! [ L
0.36 0.4 044 s(A ™Y 0ps2 0.8 0.825 085 s(A™" 009

S R —

Figure 2. XRD patterns of the as-deposited and 250, 400 *C annealed Nig as Agg s alloys limited
to the reciprocal-lattice areas near and between the theoretical reflections Ag(l11)and Ni{111}) (a)
and the theoretical reflections Ag(311) and Ag(222) (b).

P.O.R.
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Example of measurement of grain size and phase evolution: (Dubois et al. LMP Poitiers)

co-milled 4h

co-milled 3h e

co-milled 2h Pt %

co-milled 1h o

co-milled 30m

no milled J\ ) A .
65 S

ball milling - high density of dislocation and decrease of the ditireg coherent domain (DCD) or crystallite.

1-Phase evolution: elaboration of TiC by ball milling.

From two powders, pure Ti and pure C, TiC is elaborated by ball milling
2-before the phase transformation, the evolution of the Bragg peak shape can be observed.
As for example, intensity decreasing and disappearence of the first Bragg peak of C.
Decreasing of the intensity and broadening of Bragg peaks of Ti.
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What about the TiC elaborated ?

TiC intensity Area
hkl 2theta FWHM IB Kal Kal
111 35,87 0,2588 0,3411237 423,6 1445
200 41,6727 0,2587 0,36231217 652,2 236,3
220 60,4283 0,3919 0,41710324 324,5 135,35
311 72,3553 0,4422 0,47086801 168,2 79,2
222 76,1324 0,4502 0,47866205 86,7 41,5
400 90,8177 0,3614 0,56766257 51,21 29,07
331 101,8104 0,6449 0,68514851 50,5 34,6
420 105,55 0,4632 0,72781065 118,3 86,1
422 121,4724 0,6086 0,95583596 95,1 90,9
511 135,4454 0,8179 1,28478964 61,8 79,4

0,006
0,005 R? = 0,96969
0,004
0,0081_ . ___

0,002

Integral Breadth

0,001

— = 0,00300X+0,00157 - — - — — — — —

TiC crystallite size : 70 nm

0 T T T T
0 0,2 0,4 0,6 0,8

1/d (A7)

P.O.R.

1

1,2

1,4

Step 2:

Then diffractogram on LaB6 to
perform the instrumental
correction

Step 3:

Williamson-Hall plots , i.e. Int. B.
vs 1/d (or d*¥)

Scherrer’s equation

does not lead to the same values:
the crystallite size increases with
diffraction angle from :

hkl size (nm)
111 51
200 48
220 48
311 46
222 47
400 47
331 48
420 48
422 56
511 69
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0.04
eGrain size evolution (WH plots):
1 . 0.03 .
B =—+nd - 220} ST
D 'E . e
£ 007 1200}— {222)
the peak broadening is strongly anisotropic = 1
with respect to the crystallographic 0.01 1 {1 1'1 ]
directions <hkl> (Ni specimen) ) T T
2411 P s e e T v o B
—> Contribution of anisotropic elasticity 2 4 5 & T 8B &5 0 1
for deformed metals d* (nm™")
—>To check this assumption, we substitute 0.04
d* with d* / Ehkl, whereEhkl is the
elastic modulus at the crystallographic e o
direction <hkl>. (slide 110 case of Ni) e {31 1)
;; ’ {220}
£ 002 __.#---"" {200}
N.B.: it must be noted that other o {222}
microstructural factors may also ol {1 ; 1}
have an effect on the anisotropic '
peak broadening. 1
0.00 ; ; : : ;
0.00 0.02 0.04 0.08 0.08

d*/Ep (nm'GPa™)
P.O.R. 102



eGrain size:

In Fourier analysis, the measurement should be performed over a wide range in 2theta. It is
recommended to record at least four to five times the breadth of a peak on either side, and to compare
the background of a standard and the pattern to be analyzed; the background in both should be the
same. These precautions will minimize oscillations in the coefficients. The peaks to be analyzed should

be at least 20% broader than the standard peaks.

Example of the effect on the range of measurement on the Fourier coefficients:

0\/15[ ex;{— 0.5(%;?)1

Consider a Gaussian function: f(x)=

(e

|—— Gaussian Function F

D O
L

D O O
P—oC

\ FWHM =20+/2In2 =0.0094:
\\L X = the centroid of the peak =0

>3

O O O
\

-0,05 -0,04 -0,03 -0,02 -0,01 O 0,01 0,02 0,03 0,04 0,05
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eGrain size:

For the gaussian function, we saw the effect of the range investigation on the value of the
Fourier coefficients.

1 20 40 60 8 100 (120 140 L
0. 975 — \‘
0.87 AilA] o095 \
A 06} 0. 925 \\‘
0.9 \
%41 0.875 ‘\‘
0.2+ 0.85 ‘\‘
= B 0.825 \‘
20 40 60 8 100 120 140 0.8 |
L
Fourier coefficient for 2 cases: Ratio of Fourier coefficient for 2 cases:
—~case 1: over arange = 2 x FWHM -Fourier cas 2/fourier case 1
—>case 2: over a range =10 x FWHM

-Fourier cas 2/real fourier coefficient

Oscillation of the Fourier coefficient, if the range
decreases (ex. here for range [-0.008, 0.008])

50 100 150 200
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eGrain size:

0,9 Gaussian 0.9 \ Lorentzian -

\ FWHM =0,0094 ’ \ FWHM = 0,01
0,7 0,7

\ ——range [-0.05;0.05] ’ ——range [-0.2;0.2]
05 —=—range [-0.02;0.02] 05 —=—range [-0.05;0.05]
\ : \ ——range [-0.02;0.02]

- \ i \
o1 \\._‘ 0.1 m
0.1 50 100 150 200 0,10 50 100 150 200

Fourier coefficient An vs t=n/2s, for two analytical functions : Gauss and Lorentz

The effect of the scan range depends of the shape of the Bragg peak. Particularly of the shape of the

bottom of the Bragg peak.

Y

H

0

=

—e— Lorentzian Function

\

—=— Gaussian Function

O N D

-0,05 -0,04 -0,03 -0,02 -0,01

0

S —

0,01 0,02 0,03 0,04 0,05

_2sin@ 2sinBagq
S—Scenter™ )\ - )\
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B* [1/nm]

1.0

Example of Fourier analysis A Reflexions
{4 0 0}

{8 0 0} 1
{10 0 O}

Size - = 224 A

0.5

Williamson-Hall plots
(microdistortion effect): 0.0 ‘ - . . :
0 200 x 400 L (A) 600 800

CdF, Zener anisotropy A, =0.56 BaF, Zener anisotropy A, =1.03
0.12 0.09
a) CdF, b) BaF,
O 6 min O 6 min
0.08 o 30 min A 0.06 - © 12 min
A 60 min — A 40 min
£
c
=
0.04 .
% 0034
0.00+ 111 200 220 311,222 400 331,420 422 0.00 ' . 111 200 220 311'222. 400 331,420 422
| 8

> 6

0 ' 10 0 4
P.O.R. T I 10
d* [1/nm] d* [ 1/nm]



12

Williamson-Hall plots (size effect): %m . AP S
e *
X
|
L = = 550¢
6 &
& i Az & LI LS

1
0,8 —— Lorentzian Function 0.,_4 0.6 0.8 L0 2 1
0,6 &5
0.4 ‘/f m —=— Gaussian Function
0,2

0 7M ‘ M

25 26 27 28 29 30 31 32 33 34 35 2theta(9
e Pseudo-voigt: PV=a.G + (1-a).L 0
e Gauss G(x)= 1 e —0.5(2)
ePearson VIl O~/ 2Tt o
(x=x)* )"
PVII(x)=a] 1+ = FWHMLR.3548
o 1
e Lorentz L(X)=—
m=1 Cauchy (x) 21(050) + (x - X)?
m=2 lorentz
FWHMLb

P.O.R. m=oc0 Gauss
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