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X-Ray Diffraction (XRD):

X-ray diffraction techniques are a family of non-destructive techniques which reveal 
information about the crystallographic structure, and physical properties of materials. These 
techniques are based on observing the scattered intensity of an X-ray beam hitting a sample as a 
function of incident and scattered angles, or wavelength or energy.

X-Ray Diffraction (XRD) is a technique used to characterize the crystallographic structure, 
crystallite size (grain size), and preferred orientation in polycrystalline materials. XRD is 
commonly used to identify structure of unknown substances (phase analysis).

XRD is one of the most commonly used methods to determine the residual stress statein small 
crystalline volumes. 
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Hours of lessons:

25th may

26th may

27th may
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●Optical : refractive index, transparency, 
opacity

●Mechanical : strength, scratch

● Commercial : design

�Coatings or thin films for :

-Wear resistance (or scratch resistant)
-Protection  from UV rays
-Hydrophobic (designed to ease cleaning)
-Anti-reflective (eyes more visible, reduces glare, ..)
-Color changes

Why using X-Ray ? 
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amorphous

polycrystal

Mixture: amorphous + crystalline

Si O

Why using X-Ray ? 

Single crystal
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Properties of copper: 

electrical properties: range

mechanical properties
elastic properties E=120 GPa, v=0.345

plastic properties
A% range
flow stress range
max stress range
hardness range

�Example of Annealed copper vs copper

curved tube rigid straight  tube

microstructure
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amorphous

polycrystal

Mixture: amorphous + crystalline

Si O

Why using X-Ray ? 

Single crystal
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Fluorescence -Atomic spectra

K shell

L shell

M shell

Planetary model of the atom
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Scanning Electron Microsopy
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Amorphous silica Crystalline SiO2

Si

O

Glass: SiO2

2D

3D

To « see » how atoms are arranged ? 
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graphite diamond
Carbon

Black
opaque

No color
Transparent

Same element BUT different arrangement, i.e. differentcrystalline structure

hexagonal
cubic
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alcohol Ether-oxide

C, H, O

Same elements BUT different arrangement, i.e. different bindings

Alcohol Ether-oxide

2C, 6 H, 1 O
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Single Crystal:
Periodic 3D repetition
of unit cells to fill the 
entire volume

Polycrystal:
Constituted of grain 
with different
orientations

Amorphous:
Random
distribution of 
atoms

GB

�High yield strength, fracture toughness

�High elastic strain limit (2%)
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To study a given specimen:
- we have to « see » it or, in other words, to observe the photon interaction with
the matter of the specimen.

View of the spectrum of electromagnetic waves

Wavelength (m)
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To study a given specimen:

- we may observe the x-ray photon interaction with the matter of the specimen.

Incident
X-ray photon

E (or λ)

X-ray photon
E (or λ)

X-ray photon
with smaller E (or λ)

-fluorescence
-compton

-phonon,…

Electron
-Auger,…
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X-ray diffraction:
A few applications to microstructural

thin film analysis

1) microstructural analysis: � phase analysis
� texture measurement and analysis
� grain size and microdistortion analysis

2) analysis of residual stresses – measurement of applied or residual strains:
� monocrystalline films
� polycrystalline films : � quasi-isotropic thin films (simplest case)

� fibre textured thin films (actual case)

Objective: The objective of this lecture is to provide the minimum 
background to understand a few examples of x-ray diffraction analysis

� X-ray Stress Analysis (XSA)
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• Basic fundamental of x-ray diffraction
• Texture analysis (simple case)
• Grain size - microdistortions
• Elasticity
• X-ray strain measurements- Stress analysis

Bibliography
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What is a thin film or a coating in 
this lecture ?

� substrate (thickness>> thin film)

� thin film (a few µm >thickness> 10 nm)

�Personal Research Areas :

�Thin film
�Metallic materials
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What is a thin film or a coating in 
this lecture ?

� substrate (thickness>> thin film)

� thin film (a few µm >thickness> 10 nm)

Elaboration: 
-physical vapor deposition (thermal, ion beam sputtering,..)
-chemical vapor deposition
-electrodeposition
-oxidation, ….

The microstructure of thin films depends on the experimental conditions 
of elaboration. X-ray diffraction is a powerful non destructive method
used to study the microstructure (phase analysis, texture, grain size), 
the residual stress state, the mechanical properties,…
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Thin films have a wide range of applications: electrical, magnetical, optical, 
corrosion, mechanical properties. 
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In

InSb

Ti/W (15 nm)

Ni (120 nm

Au (20 nm)

 

Gold   � anti-oxidization
Nickel � Wetting
Ti/W � anti-diffusion

Flexible substrates:
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Coatings or thin films for :

-Wear resistance (or scratch resistant)
-Protection  from UV rays
-Hydrophobic (designed to ease cleaning)
-Anti-reflective (eyes more visible, reduces glare, ..)
-Color changes
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• Microstructure contains far more than qualitative descriptions (images) of cross-
sections of materials.

• Most properties are anisotropic which means that it is critically important for 
quantitative characterization to include orientation information (texture).

• Lot of properties are size dependent (ex: mechanical properties such as 
hardness, yield stress,…; optical properties; electronical properties, magnetic 
properties)

• Many properties can be modeled with simple relationships, although numerical 
implementations are always necessary.

Thin films have a wide range of applications: electrical, magnetical, optical, 
corrosion, mechanical properties. �Why studying the microstructure ?

-Telaboration/Tf 
-Speed growth
-Working Pressure 
-electrolyte, etc…
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Optical anisotropy :

Example of cordeirite (rocks)

a
b

c

Orthorhombic (a,b,c)

Darkest blue

Medium blue

Pale stone - colorless
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Example of thin film microstructures: Scanning electronic microscopy
Cross sections

Delaminations� stress ?
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What is the informations in a Bragg peak ? 

• Position

• Intensity

• Shape ���� FWHM

• Phase analysis (peak positions)
• Texture analysis (variation of peak intensity)
• Grain size – microdistortions (peak shape)
• X-ray Strain or Stress analysis (shift of peak position)
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XRD can be used to determine

• Phase Composition of a Sample
– Quantitative Phase Analysis: determine the relative amounts of phases 

in a mixture by referencing the relative peak intensities
• Unit cell lattice parameters and Bravais lattice symmetry

– Index peak positions
– Lattice parameters can vary as a function of, and therefore give you 

information about, alloying, doping, solid solutions, strains, etc.
• Residual Strain or stress (macrostrain)
• Crystal Structure

– By Rietveld refinement of the entire diffraction pattern
• Epitaxy (thin film)/Texture (preferred orientation)/Orientation (single crystal)
• Crystallite Size and Microstrain

– Indicated by peak broadening
– Other defects (stacking faults, etc.) can be measured by analysis of 

peak shapes and peak width 
� in-situ capabilities, too (evaluate all properties above as a function of time, 

temperature, gas environment, or mechanical tests)
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I
Fundamental of x-ray diffraction

-basics of crystallography
-basics of x-ray diffraction
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Outline: Lattice
Points lines, planes
Crystal systems
Primitive and non-primitive cells
Reciprocal Lattice

• Crystal (or single crystal):  A solid composed of atoms, 
molecules arranged in a pattern periodic in three 
dimensions

• Polycrystals:  Solids consisting of many contiguous 
crystals (or grains or crystallites)

• Lattice:  Three dimensional array of points (lattice 
points), each of which has identical surroundings. 
Mathematically Lattices can extend to infinity

Crystallography
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• Unit cell:  Defined by three independent translation 
vectors a,b and c in a right-handed sense.  Different 
translations of the form                        will reproduce 
the whole structure.  Primitive cell is a unit cell 
which contains only one atom per cell. 
� FCC example….

n1a + n2b + n3c 

Crystallography

A unit cell

• Directions:  The direction of a line can be 
determined by drawing a line from the origin 
parallel to the line and assigning a

• The line is then represented by the [uvw] 
bracket.  uvw is always converted to the smallest 
integer number.

r = ua + vb + wc 

• Negative directions are represented by a bar above 
the number

• Directions of a form: are the directions represented by 
symmetry 

[ ] [ ] [ ] [ ] 111111,111,111,111 ⇒

r = ua + vb + wc 

Indices of directions
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Crystallography

• If the axial lengths are a, b, c, then the planes make the intercepts of a/h, b/k, c/l.  The 
miller indices for the plane is (hkl), and the family of planes are {hkl}.

• Planes can be represented by their normal vectors

( ) ( ) ( ) ( ) { }111111,111,111,111 ⇔
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• There are 7 different kinds of unit cells that can 
include all the possible lattice points (Crystal 
Systems) i.e. cubic, tetragonal, orthorhombic, 
rhomboedral, hexagonal, monoclinic, triclinic

• There are Fourteen Bravais Lattices. They are 
categorized in terms of

– P primitive
– I Body Centered
– F Face centered
– A,B,C Base centered
– R Rhombohedral

• In the following we will consider the simplest 
forms of lattice, i.e. the cubic systems, which is 
a common structure of a lot of metals and semi 
conductors.

�The interplanar spacing dhkl for {hkl} depends on 
the crystal system chosen.  For cubic system:

dhkl =
a

h2 + k2 + l 2

Crystallography
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2D tilings

Penrose tiling

� quasi-crystals

Bravais lattices:

� crystals
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Beginnings of X-ray diffraction

● 1895     Discovery of X-ray by German physicist Röntgen � x-rays penetrate materials
opaque to visible light� radiographic analysis

● 1912 Von Laue shows that x-rays are diffracting by crystalline materials.
A few months later, Bragg derived a simple, elegant set of laws relating
diffracting phenomena to crystal structure
� beginning of radiocrystallography
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●X-ray production:
X-rays may be produced by 2 fundamentally different methods:

1- the first method utilizes the fact that all electrically charged particles emit radiation during
rapid deceleration

2-the second method involves ionization. 

One way to produce X-ray consists to bombard a material (anode) with accelerated electrons. If the 
incoming electron is energetic enough, it can eject an electron from a K or 1s shell, and excite the atom
to a high energy state. The atoms then attains a lower energy state by filling this vacancy by an 
electron from a higher energy shell (L or M). The difference between the electron energies of the K 
shell and the higher energy shell is emitted in the form of characteristic x-rays during this process.

nucleus

Electronic transition 
causing emission of 
characteristic radiation. 
Electron energy levels
of Cu

electronnucleus

Bremstrahlung:

� Decelaration of the incoming electron
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synchrotron sourceSealed tube

electron
photon
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Example of sealed tube or rotating anode.

• Sealed X-ray tubes tend to operate at 0.9 
to 2 kW. 

• Rotating anode X-ray tubes produce 
much more flux because they operate at 5 
to 18 kW. 

• Both sources generate X rays by striking 
the anode target wth an electron beam 
from a tungsten filament:

• The target must be water cooled. In a 
rotating anode the anode spins at a given 
speed, helping to distribute heat over a 
larger area and therefore allowing the 
tube to be run at higher power without 
melting the target.

• The target and filament must be contained 
in a vacuum (because of e absorption)

Cu

H2O In H2O Out

e-

Be

XRAYS

window
Be

XRAYS

FILAMENT

ANODE

(cathode)

AC CURRENT

window

metal

glass

(vacuum) (vacuum)
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0.0 1.0 2.0 3.0
λ in Å
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0

1

2

3

4

5

6

Kα

Kβ

5 kV
10 kV

20 kV

25 kV

Characteristic
radiation

Continuous radiation
or bremsstrahlung

λmin

15 kV

Intensity of x-rays from copper
Linear absorption coefficient of nickel

KαKβ

1.4 1.6

λ in Å
(a) No filter

Kβ

Kα

K absorption
edge of nickel

1.4 1.6

λ in Å
(b) With Ni filter

The most simple way to reduce the wavelength range, i.e. remove Kβ radiation.

eV

12400
min =λ

X-rays: polychromatic background + several peaks with high intensity

A K line is produced if e is ejected from K shell and the L shell supplies e to it. But L shell has 2 e 
(with different spins) � 2 lines of different energies in Kα � Kα1 and Kα2. M shell � Kβ
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S

Most of powder diffractometers use the so-called “Bragg-Brentano” geometry.

In the B-B geometry, the incident- and diffracted-beam slits move on a 
circle that is centered on the sample. Divergent X rays from the source 
hit the sample at different points on its surface. During the diffraction 
process the X rays are refocused at the detector slit.
The B-B geometry provides the best combination of intensity, peak 
shape, and angular resolution for the largest number of samples.
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ΩΩΩΩ

2θ2θ2θ2θ
X-ray source

X-ray detector

ΩΩΩΩ ���� The incident angle is defined as the angle between the X-ray source and the sample

2θ2θ2θ2θ ���� The diffracted angle is defined as the angle between the incident beam and the detector angle

Normal to sample surface

φ / ϕφ / ϕφ / ϕφ / ϕ

Diffraction angles
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ΩΩΩΩ

2θ2θ2θ2θ
X-ray source

X-ray detector

If Ω=2θ/2(=θ) Ω=2θ/2(=θ) Ω=2θ/2(=θ) Ω=2θ/2(=θ) ���� symetric, classical theta/2theta scan
���� the diffracting planes are // to the surface

Normal to sample surface

φ / ϕφ / ϕφ / ϕφ / ϕ

Diffraction angles
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In
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ity

(a
.u

.)

2θθθθ (degrees)

Typical diffractogram: theta/2theta scan
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Spectral Contamination in Diffraction Patterns
Kα1

Kα2

Kβ W Lα1

Kα2

Kα1

Kα2

• The Kα1 & Kα2 doublet will almost 
always be present

– Very expensive optics can 
remove the Kα2 line

– Kα1 & Kα2 overlap heavily at 
low angles and are more 
separated at high angles

• W lines form as the tube ages: the 
W filament contaminates the target 
anode and becomes a new X-ray 
source

• W and Kβ lines can be removed 
with optics
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●Monochromatisation :

simplest case : use a filter � remove
kbeta radiation and a part of the background (see
former slide)

other cases: use one or several single 
crystals as monochromator

Bg
E
E θθλ

λ cot∆=∆=∆

« Good » single Crystal : ∆λ/λ~10-4

« bad » Single Crystal (exhibiting mosaïcity :  
∆λ/λ~10-2

Flux ∝ integrated reflectivity

re
fle

ct
iv

ity

Incident angle theta-thetabragg (degree)
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Values of Wavelengths for some classical tubes

Often quoted values from Cullity (1956) and Bearden, Rev. Mod. Phys. 39 (1967) are incorrect.

Lot of XRD textbooks do not have the most recent values Hölzer et al. (1997)

2.084920 Å2.08487ÅCr Kβ0.632305 Å0.632288ÅMo Kβ

2.293663 Å2.293606ÅCr Kα20.713609 Å0.713590ÅMo Kα2

2.289760 Å2.28970ÅCr Kα10.709319 Å0.709300ÅMo Kα1

Chromium

Anodes

Molybdenum

Anodes

1.620830 Å1.62079ÅCo Kβ1.392250 Å1.39220ÅCu Kβ

1.792900 Å1.792850ÅCo Kα21.544426 Å1.54439ÅCu Kα2

1.789010 Å1.788965ÅCo Kα11.540598 Å1.54056ÅCu Kα1

Holzer et al.
(1997)

Bearden
(1967)

Cobalt
Anodes

Holzer et al.
(1997)

Bearden
(1967)

Copper
Anodes
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Whatever the wavelength, what happens for the x-ray photon? 

X-ray photon interaction with matter:

-difference between scattering, diffraction and refraction

Incident
X-ray photons

E (or λ)

X-ray photon
E (or λ)

X-ray photon
with smaller E (or λ)

-fluorescence
-compton

-phonon,…

Electron
-Auger,…

Incident
X-ray photons

With lot of 
energies (i.e. 

polychromaticλ)
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x-ray photon interaction with matter

Incident
X-ray photon

E (or λ)

0k
r

Incoming plane 
wave

e-

scattering

e- or a few e- randomly distributed or atom

�The electrons interact with the oscillating electric field of the light wave. 
�The electrons in an atom coherently scatter light. 
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x-ray photon interaction with matter

Incident
X-ray photon

E (or λ)

0k
r

Incoming plane 
wave

diffraction

Nice arrays of atoms = cristal

θ

θ

Generally speaking, diffraction 
occurs when each object in a 
periodic array scatters radiation 
coherently, producing concerted 
constructive interference at specific 
angles.
Here, the object is the atom or 
molecule, and the radiation is 
composed of x-ray photon.
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x-ray photon interaction with matter

Incident
X-ray photon

E (or λ)

0k
r

Incoming plane 
wave

refraction

θ2

θ1

� Consequence of n<1, existence of a critical angle for which there is a total external reflection
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Conclusion:

The electrons interact with x-rays.

�diffraction may occur if the irradiated object is composed of a periodic array of atoms or molecule

�X-rays are also

reflected

scattered incoherently

refracted

absorbed or transmitted
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●Absorption of X-rays:
x-rays are attenuated as they pass through matter, so that the transmitted beam is

weaker than the incident beam. Various processes contribute to this decrease : coherent
scattering, incoherent scattering, fluorescence, …

dx
I

dI µ−=

∑
=








ρ=






ρ
n

1i i
i

µwµ

Here:  I is the transmitted beam intensity
µ linear absorption coefficient (proportional to the 
density ρρρρ of the material). µ/ ρρρρ is the mass absorption 
coefficient.

For an homogeneous specimen of finite thickness x:

)x../µexp(.I)xexp(.I
I

dI
I 00

x

0
x ρρ−=µ−== ∫

For a specimen consisting of n substance, the mass absorption coefficient is:

With wi the weight fractions of each substance

I0 Ix

> x <
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●Absorption of X-rays:

For an homogeneous specimen of finite thickness x:

Let us define the penetration depth as : 

I0 Ix

> x <

e

1

I

I

0

x =

2.5

21.2

4.1

70.8

76.2

3607

Penetration
depth (µm)

1

8.3

1.6

28

30

1420

Penet. Depth
(µm) Reflection
geometry
90%

2θ=40°

0.320819.3Au

2.552.98.92Cu

0.5308*7.874Fe

8.460.62.33Si

948.62.7Al

4281.51.848Be

Penet. Depth (µm) 
Reflection geometry
50%

2θ=40°

Mass 
absorption 
coeff. 
(cm².g-1)

Density
(g/cm3

Element

penetration depth for Cu Kα radiation
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●Scattering of X-rays:

When an x-ray beam, containing x-ray photons of wavelength λ, impinges on a 
specimen, the photons collide with the fundamental particles (electrons and nuclei) making up 
the specimen, and diffuse or scatter in all directions.

It is possible to have two types of collisions with the electrons:

�elastic . There is no momentum transfer between electron and photon. 
Thus the scattered photon has the same energy after the collision as before. This is called the 
coherent scattering.

� non elastic. There is some momentum transfered from the photon to 
the electron. Thus the scattered photon will have a longer wavelength than the incident photon. 
This incoherent scattering is usually called Compton scattering.

In both of the above processes electrons scatter the photons in all directions. 
However, the intensity of the scattered beam depends on the scattering angle:

The absorption is a function of the wavelength (or the energy):

5323652502081158063.1Au

2.29091.93731.65911.54180.71070.61470.5608λ (Α)

Cr KaFe KaNi KaCu KaMo KaRh KaAg Karadiation

Notes: this is for Kα radiations , i.e. the average of Kα1+Kα2 is defined as: 
3

2 2K1K
K

αα
α

λ+λ=λ
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-The last term is the polarization factor

-the factor 1/m ensures that for scattering from atoms the scattering from the nucleus can
be ignored. Indeed, M(proton or neutron) ≈ 1836 x M(electron)

If an unpolarized beam of intensity I0
impinges on a single electron, the total 
coherent scattering at a point P is given
by the Thomson equation:

X1

X2

X3

E

P

λλλλλλλλ 2θ2θ2θ2θ
I0 Ie













 θ+=












 θ+=
2

2cos1
.

r

I
.r

2

2cos1
.

cmr

e
.II

2

2
02

e

2

422

4

0e

r

m:electron mass, e: el. charge, c: light’s speed
r: length of vector to P, 2θ :angle between r and incident beam

● ● Scattering from electron :
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● ● Scattering from an atom :
When the x-ray beam impinges on an atom, with atomic number Z, the total scattered

intensity to a point P will be slightly different. There will be Z scattered beam sources at different
positions around the atom. Thus Z rays will arrived at the point P away from the atom.

)
sin

(f

electronanbyscatteredwaveofamplitude

atomanbyscatteredwaveofamplitude
f

λ
θ=

=

However, the total scattered intensity at P, IT, will
depend on the relative phases of the individual
rays. If all the beams are in phase, the total 
intensity is Z2Ie. If the beam from individual
electrons are out of phase by various amounts, a 
certain amount of destructive interference will
take place.

The term used to describe the total coherent
scattering from an atom to a point P is the atomic
scattering factor, f, which is defined as:

Example (atom K, Z=19):
• electronical density
b) atomic scattering factor of ion K+

Distance from atomic center (A)

Guinier (1968), radiocristallographie
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● ● Scattering from an atom :

In an atom, we have to consider the scattering from the cloud of electrons around the nucleus.  
The nucleus is used as the origin of coordinates. 
Then for each electrons we may define a distribution function ρn(r) which gives the probability that
the electron should be contained in unit volume at the position defined by the vector r.

The scattering amplitude for the electron n can be written as:

( )∫ πρ= drr.qi2exp).r()q(f nn

( ) ( )∑ρ=ρ
n

n rrThen, for all electrons associated with an atom:

Then, we have the atomic scattering factor: ( )∫ πρ= drr.qi2exp).r()q(f

�The atomic scattering factor can be written as the Fourier transform of the cloud
of electron, i.e. the electron density function.
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● ● Scattering from an atom :

�The atomic scattering factor can be written as the Fourier transform of the cloud
of electron:

3
4
5
6
7
8
9

10
11

1sin −Ain
λ

θ

f

electronnglesiaofpowerscattering

atomofpowerscattering
f =
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● ● Scattering from planes of atoms :
When the x-ray beam impinges on a crystalline material, all of the atoms will scatter x-

rays in all directions. However, the periodic distribution of atoms on planes may cause 
constructive, or destructive, interference of the coherent component of the scattered radiation from
the individual atoms, depending on the spacing between the planes, and the wavelength of the 
incident radiation.

If a parallel x-ray beam impinges on a crystal where the (hkl) planes are parallel to the surface, the 
2 waves ABC and DEF will be in phase, and so mutually reinforce each other if the path difference
GEH is an integral multiple (n) of the radiation wavelength.

θ θ

2θ

A

D

C

F

B

G H

E

d

Scattered beam

Atomic planes

incident beam
-Since GE=EH= d. sinθ, 
constructive interference will
occur when:

θ=λ sin.d2n
Bragg’s law (1912)

θ=λ sin.d2 hkl
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● ● Scattering from planes of atoms (other approach) :
When the x-ray beam impinges on an actual three dimensional crystalline material, 

there are a very large number of atomic planes. Thus the large number of mutually reinforcing
beams causes appreciable diffracted intensity at the correct angles (Bragg angles).

Along directions that do not satisfy Bragg’s law, the scattered waves are out of phase, 
resulting in destructive interference and no diffracted intensity. 

i.e. the other approach we have done for atoms can be employed for the 
crystal, it consist to consider that the electron density of a crystal may be
written:

( ) ( ) ( )i
i

i rr.rr −δρ=ρ ∑

where ρi(r) is the electron density associated with the atom centered at the vector r-ri.

The other, more satisfactory, way to think about diffraction from lattices is the method due to von Laue, 
which does emphasise scattering from atoms and their constituent electrons and nuclei. The scattering
angle is 2θ. The planes of the crystal are characterised by the Fourier coefficients of the electron density
ρ(r) (for X-ray scattering) or of the interaction potential V(r) (for electron scattering). In either case we
can write the scattering agent in terms of a Fourier series based on the reciprocal lattice. 
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We have seen that scattering amplitudes of atoms may be expressed in terms of the Fourier transform
of a electron distribution in real space. ρi(r) is the electron density associated with the atom centered at
the vector r-ri.
It is the same for the crystal. Let us define an unit cell (a,b,c) containing only one atom with an electron
distribution of ρ0(r) (for a sake of simplification� we will see later the changes induced by several atoms
: structure factor):

( ) ( ) ( ) )r(s.)ncmbla(r.rr
l m n

0 ∑∑∑ ++−δρ=ρ s(r) is a shape function

�The scattering from planes of atoms is written as FT(density of electron)

To perform this calculatus, we need to define « the reciprocal lattice » or « the reciprocal space ». 

The reciprocal lattice is difficult to comprehend from a physical standpoint. It is an imaginary construct
used for the convenience of crystallography.
The reciprocal lattice is just as 'real' to the crystallographer or 'solid stater' as the real lattice, as it is the 
natural space in which to discuss waves in lattices, and to enumerate the available states .
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Reciprocal space

The reciprocal space is defined by vectors a*,b*, c* such that (with V unit cell volume):

V

ba
c,

V

ac
b

V

cb

)cb.(a

cb
a

**

*

rr
r

rr
r

rr

rrr

rr
r

∧=∧=

∧=
∧

∧= a*.b=a*.c=b*.c=b*.a=….=0

a.a*=b.b*=c.c*=1

So that

Then , the Fourier transform of a crystal gives:

( ) ( ) ( ) )u(S.*)lc*kb*ha(u.uF]r[FT)u(F
l m n

0 ∑∑∑ ++−δ=ρ=

Thus, we have scattering intensities only at the reciprocal lattice points. The distribution of the 
scattered intensities is described by S(u).
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Cubic crystal

a a*

Reciprocal space

• NOTES ON RECIPROCAL SPACE
•The reciprocal space of the 
reciprocal space is the real space

•The reciprocal space of a FCC 
crystal is a bcc structure.

•The reciprocal space of a BCC 
crystal is a fcc structure.

•2 definitions:
a.a*=1
a.a*=2π

Real

a1

a2

Reciprocal

b1=1////a1

b2=1////a2
•The reciprocal space of a cubic 
crystal structure is cubic

•The reciprocal space of tetragonal 
crystal structure is tetragonal.
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• NOTES ON RECIPROCAL SPACE

• Doubling the periodicity in real space produces twice as 
many diffraction spots in reciprocal space.

• This effect can be produced chemically with an ordered 
binary alloy.

• A doubling of the periodicity in real space will produce 
half-order spots in reciprocal space.

Real

a1

a2

b1=1/21/21/21/2a1

b2=1/21/21/21/2a2
2a2

2a1

Reciprocal
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●The structure factor of a unit cell:
For the actual derivation of bragg’s law, the three-dimensional symmetry of the unit 

cell has to be taken into account. Indeed, if Bragg’s law is not satisfied no diffraction can occur, 
but in certain cases there is no diffracted intensity at angles predicted by Bragg’s law. This effect
is due to the particular positions of the atoms in the unit cell.

d100

d200

1 1'

2

3

2'

3'

A

B

C

D

E

F

Illustration:
-Consider a BC crystal.
-if the phase difference between the 
rays 1 and 3 is λ
�diffraction should occur

-But phase difference between 1 and 
2 is 1/2xλ. Thus, ray 2 will interfere
destructively with ray 1
� No diffracted intensity

DEF=0.5 x ABC
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●The structure factor of a unit cell:
The total intensity diffracted by a given unit cell can be determined from the 

summation of the waves from the individual atoms. If the scattering amplitude from the jth atom, 
with fractionnal dimensionless coordinates uj, vj,wj, is fj, the relative intensity scattered by the unit 
cell for a given reflection hkl is proportional to

( )( )∑
=

++π=
N

1j
jjjjhkl w.lv.ku.hi2exp.fF

h,k,l  mixedh,k,l  unmixedF=f[1+exp(iπ(h+k)+exp(iπ(h+l)+exp(iπ(l+k)]FCC

(h+k+l) odd(h+k+l) evenF=f(1+exp(iπ(h+k+l))BCC

NoneAllF=fSimple Cubic

NO ReflectionsReflections forStructure factorBravais lattice

N is the number of atoms
present in the unit cell.

Examples of structure factors for selected lattices

The total scattered intensity is proportional to the square of the absolute value of Fhkl:

( )( )
2

N

1j
jjjj

2
hkl w.lv.ku.hi2exp.fFI ∑

=
++π∝∝
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Experimental utilization of Bragg’s law
-Monochromatic
-Polychromatic

●The diffraction condition can be written as : S=S0+λ.r* where rhkl*=n(ha*+kb*+lc*)
With n integer et hkl indices of the smallest hkl (first reciprocal node)

●the incident beam has the propagation direction : vector S0
●the diffracted beam has the propagation direction : vector S (situated in the plane defined by S0
and the normal to the diffracting planes (vector rhkl*)

● ● the diffracted beam is such that: the angle θ between plane and incident beam is the same the 
between diffracted beam and planes.
● ● this angle theta satisfied the Bragg’s law

θ=λ sin.d2 hkl
****

hkl c.lb.ka.hr
rrrr ++=*

hkl0 r.ss
rrr λ+= with

2θ

S0/λ

S/λ

a*
b*

c*

r*

2θ

S/λ

•

● ● ●Bragg Laue
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Bragg’s peak
cubic crystal

Example of diffractogram of a polycrystalline specimen :

a

a*

Reciprocal space

2θ

S0/λ

S/λ r*

b*

a*

Scattered intensity :if theta is a Bragg’s angle or if r* is a reciprocal space vector.

•The Ewald construction is a way to visualize the Laue condition that the change is 
wavevector is a vector of the reciprocal lattice –K= k’ – k , (or r*=S/λ-S0/λ) where k= 1/λ
is the magnitude of the incident wavevector.

Ewald
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Intensity scattered by a small crystal:

-incident beam I0
-the effect of absorption are negligible as the crystal is small.
-the crystal has the dimensions A, B, C where A=Na.a, B=Nb.b, C=Nc.c
-there is only one atom per unit cell (a,b,c) of atomic scattering factor f

The scattering wave is the sum of the Na.Nb.Nc waves of amplitude f.Ie. If we use the complex
notation (as we have done for the scattering factor), the amplitude wave scattered by an atom
can be written as :

))lwkvhu(i2exp(.I.f)iexp(I.f ee ++π−=ϕ

Thus the intensity for the whole crystal is :

21N

0

1N

0

1N

0

2
e

2 a b c
)lwkvhu(i2exp(I.fI ∑ ∑ ∑

− − −
++π−=
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-10 -5 5 10

0.2

0.4

0.6

0.8

1

Using the fact that: )h)1N(iexp(
hsin

Nhsin

1)ih2exp(

1)iNh2exp(
)ih2exp(

1N

0
−π−

π
π=

−π−
−π−=π−∑

−

lsin

lNsin
.

ksin

kNsin
.

hsin

hNsin
I.fI

2
c

2

2
b

2

2
a

2
2
e

2

π
π

π
π

π
π=

( )2
2

N

Nsin
f

επ
επ=

π 2π

πNε

If h,k,l are integers I=f²Ie². Na².Nb².Nc² exact condition of reflection. But if Ni are large 
numbers, the range where I≠0 is very small.

c

b

a

ll

kk

hh

ε+→
ε+→
ε+→If we substitute:

We obtain a domain in the reciprocal
space where I≠0. The intensity is non 
negligible if ε<1/N.

� Thus if the size of the crystallite
decreases, the domain where I≠0 is
increasing. In other word, the FWHM 
increases…
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detector
Ω Ω Ω Ω rotation 

2θθθθ rotation 

X-Ray source

 χ χ χ χ rotation 

φ φ φ φ rotation 

 incident 
XRay beam

diffracted X-
Ray beam

sample

2θ

S0/λ

S/λ

a*
b*

c*

r*

Diffractometer geometry

Each cone is characteristic of a given dhkl

Reflection geometry Transmission geometry

Incoming XR
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In
te

ns
ity

(a
.u

.)

2θθθθ (degrees)

Typical diffractogram: theta/2theta scan
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Incoming XR
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● Intensity of diffracted lines for polycrystals:

From an experimental scan, we can
observed that the diffracted intensity is
not equal for each peak.
Why ?

The relative diffracted intensities of Bragg peaks for a given diffraction pattern 
are dependent on six parameters:

+ structure factor (previously discussed)
+ polarization factor
+ Lorentz factor
+ multiplicity
+ absorption factor
+ temperature factor.
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●Polarization factor and Lorentz factor:

a) The polarization factor is a trigonometric factor that is a function of 2theta, it described the 
variation of scattered intensity with scattering angle (x-ray beam is an electromagnetic wave). 
This correction has already be seen in thomson equation.

Obviously, the use of a monochromator is changing the polarization correction.

b) The Lorentz factor is a collection of trigonometric terms that describes the dependence of 
the diffracted intensity (maximum or integrated) on the diffraction angle. There are different
factors that contribute to the Lorentz factor (the dependence of diffracted intensity from any
one crystallite, the diffracted intensity per unit length of the diffraction cone, the number of 
grains which are oriented such that they can diffract at a given angle 2theta.

�The Lorentz factor and the polarization factor are usually combined together to form
the LP factor:

θθ
θ

cos.sin

2cos1
..

2

2+=PL
This relation is valid only for an unpolarized
incident beam

θ+
θα+=

2cos1

2cos.2cos1
.P.L

2

22 This relation is valid only for a polarized
incident beam, i.e. using a monochromator (α
is the incident angle on the monochromator)
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●Multiplicity factor:
this term describes the number of equivalent planes that can diffract at a given Bragg 

angles. For example, for a cubic crystal all eight members of the {111} family have the same d 
spacing and any grains in which one of these planes satisfy the Bragg conditions diffract at the 
same angle.

Ex: cubic crystal, 
m=6 for {100}, m=12 for {110}, 

●Temperature factor:
Atoms vibrate around their mean positions, with an average displacement that is

proportional to the temperature. This displacement is approximately 5-10% of the atomic spacing
at room temperature and increases with increasing temperature.

The values of atomic scattering factor f do not include a vibration term and must be
corrected for the temperature effect: f(T)=f.exp(-Bsin²θ/λ²) where B is a constant related to the 
atomic displacement and are tabulated.

This affects constructive interference and the total diffracted intensity decreases. 
These decreases are especially noticeable at high 2theta angles.
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●Absorption factor:
Relatived diffracted intensities may also be affected by absorption, which

is directly related to the path length the incident and diffracted beams traverse in the 
specimen for a given geometry. 

α β

dz
z

l

I0

If a is the volume fraction of crystallites that can diffract at this angles: 

dz).
sin

1

sin

1
z.µexp(.

sin

l.b.a.I
dI 0

.diff 








β
+

α
−

α
=

The total energy reaching a layer of length l and 
thickness dz, located at depth z, is proportional to aI0 . 
exp(-µ. distance) where a is the fraction of incident 
energy by unit volume.

In some experiment, an additional rotation can be added, inclinaison ψ, and the substitutions 
have to be performed in the above equation:

ψ−θ=βψ+θ=α and
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The total diffracted intensity is obtained by integrating for a thin film of thickness z:

∫
=

=
z

0z
diff.diff dII

The diffracted intensity recorded at a distance r from the specimen is (for small
crystallites and isotropic texture (random distribution of crystallite)):

dV.DW.
V

1
.n.F..

cossinr16

1
.

2

2cos1
.r.IdI

2
2
hkl

3
2

2
2
e0 λ

θθπ
θ+=

*dI intensity by unit length of diffraction line recorded at the distance r from the specimen
*r e²=7;9x10-26 cm²
*Polarisation factor and lorentz factor (for Debye Scherrer geometry)
*Fhkl structure factor
*n multiplicity factor
*DW: Debye-Waller correction (or temperature factor)
*V: volume of the unit cell
*dV: volume of the powder specimen. If the absorption was negligible in the whole irradiated
volume V, dV can be replaced by V to obtain the total diffracted intensity
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Difference between elect. diffraction and XRD:

XR ~5 – 10 keV ∼ 1.5 Å
el. ~ 100-200  keV ∼ 0.07 Å

θ=λ sin.d2 hkl

� 2θ from 10°to “180°”
� 2θ from 0°to 10°

2θ

S0/λ

S/λ r*

b*

a*

Radius of Ewald sphere : RES=1/λ RES(XRay) << RES(elect) 

S/λ
S0/λ

AND

Specimen thickness
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0,4

0,5

0,6

0,7

0,8

0,9

1

1,1

-1 -0,5 0 0,5 1

R= 1
R= 20

Illustration: Let us plot a circle for a radius (XRay)=1 and for a radius of 20 (Electron)

0,95

0,96

0,97

0,98

0,99

1

-1 -0,5 0 0,5 1

R= 1
R= 20



P.O.R. 81

ED pattern of 
polycrystalline gold. (face-
centered cubic lattice, 
a=0.408 nm)

TEM plan view diffraction pattern (a) and image (b) of the 8.9 nm 
thick Au film. In (a) the {111}, {200}, {220}, {311} rings are observed 
at increasing diffraction angles, none of the ring have higher 
intensities regions arranged in symmetric pattern (three-fold or four-
fold) showing no discernible texture. 

TEM plane-view diffraction patterns of the compliant 
structure (single crystal GaAs) . Index ‘b’ is for the 
substrate and ‘l’ for the layer 

Difference between elect. diffraction and XRD:
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Difference between elect. diffraction and XRD:

TEM
(100 keV)

XRD
(~8 keV)

If you are lucky !!

Incident beam
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Experimental applications of XRD:

Phase identification: relies mainly on the positions of the peaks on the diffractogram and to 
some extent on the relative intensities of the peaks. 

From the shapes of the peaks, additional and often valuable informations can be extracted. 
The shape, particularly the width, of the peak is a measure of a distribution of d-spacing. For 
example, this distribution results from ponctual defects (as vacancy, interstitials, impurities) or 
defects such as dislocations.
Crystallite size can also cause peak broadening:

- The well known Scherrer equation may be used in some specific cases. Once 
instrument effects have been excluded, the crystallite size is easily calculated as a function of 
peak width, peak position and wavelength.

-More sophisticated methods takes not only the peak width into account but also
the shape of the peak. (ex: Williamson-Hall, Warren-Averback). Those methods are capable of 
yielding both the crystallite size distribution and lattice microstrain. The Warren Averback
method is based on a Fourier deconvolution of the measured peaks and the instrument 
broadening to obtain the true diffraction profile.

N.B.: The width of the peak is characterized by the ful l width at half maximum (FWHM). It is the simplest
way to interpret measure of peak width. However, there i s a second characterisation of peak width which
is integral breadth. Integral breadth is simply the area under the peak divided by the peak height (after
background removal). In other word, it is the width of a rectangle as high as the peak. The use of FWHM, 
compared to integral breadth, can for example overestim ate the crystallite size.
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Phase identification:

Diffractogram for polycrystalline gold specimen:
� crystallographic structure (FCC)
� lattice parameter a=0.4078 nm

What about the relative intensity ?

Incoming XR

Each cone is characteristic of a given dhkl
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Typical database informations: 
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Phase identification: example of diffractogram

Diffracted intensity

�Phase identification from the peak position and peak intensities

What about additional microstructural information ?

Ti
����2 phases

����1 phase
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C graphite -2H Ti TiC
hexagonal P63/mmc hexagonal P63/mmc FCC Fm3m
a=0,24704 nm a=0,29505 a=0,43274
c=0,67244 nm c=0,46826
radiation 0,1540598 nm
2th rel. Int. h k l dhkl 2th rel. Int. h k l 2th rel. Int. h k l

26,38 100 0 0 2 2,555 35,09 25 1 0 0 35,907 80 1 1 1
42,22 2 1 0 0 2,341 38,42 30 0 0 2 41,71 100 2 0 0
44,39 6 1 0 1 2,243 40,17 100 1 0 1 60,45 60 2 2 0
50,45 1 1 0 2 1,7262 53,01 13 1 0 2 72,371 30 3 1 1
54,54 4 0 0 4 1,4753 62,95 11 1 1 0 76,141 17 2 2 2
59,69 1 1 0 3 1,332 70,66 11 1 0 3 90,8 10 4 0 0

77,245 3 1 1 0 1,2776 74,16 1 2 0 0 101,785 13 3 3 1
83,186 3 1 1 2 1,2481 76,22 9 1 1 2 105,502 25 4 2 0
86,826 1 0 0 6 1,2324 77,37 6 2 0 1 121,377 25 4 2 2
93,597 1 2 0 1 1,1707 82,29 1 0 0 4 135,355 16 5 1 1

Ti
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Different kinds of diffractogram: 2D detectors (example of ALS Berkeley USA beamline 11.3.1 and 
7.3.3; Nobumichi Tamura, Sirine Fakra)

Bend Magnet
Source
(250x40µµµµm)

1:1 Toroidal
mirror

1:1 image
at slits

Elevation view

4 Crystal
Si(111)
Monochromator

CCD
camera

Sample
on scanning
XY stage

Incoming XR

Each cone is characteristic of a given dhkl
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Different kinds of diffractogram: 2D detectors

Multilayer W/Cu period 24 nm (6 nm of W and 18 nm of Cu) total thickness 240 nm
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Different kinds of diffractogram: 2D detectors

Transmission mode

2D diffraction pattern of a SnO2 thin 
film deposited on glass recorded in 
reflection mode. (Beamline 11.3.1 ALS 
Berkeley).

reflection mode

Continuous ring

Continuous ring

texture

Strong
texture

Goudeau et al.
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Diffraction pattern of w polycrystalline film
/ discontinuous diffraction rings

Different kinds of diffractogram: 2D detectors

ALS beam line 7.3.3

Almost continuous ring

Diffraction pattern of a W film

Recorded in reflection mode at 
16 keV (0.775 Å), at a 100 µm
spatial resolution. 

N. Tamura, S. Fakra, & M.A Brown, ALS and Caltech

textured
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Summary of x-ray diffraction: 

• Position

• Intensity

• Shape ���� FWHM

XRD is based on the assumption that XR radiation (with λ on the order of A) can
elastically scatter of the electronic structure of a crystal. The periodicity of the 
crystal will induce this scattering of the XR plane-wave to constructively interfere at
certain scattering directions while destructively interfering at other scattering
directions. The diffracted X-Rays are detected at a distance much larger than the 
periodicity of the lattice, so that the diffraction can be approximated by the 
Fraunhofer diffraction conditions. It has been shown that the diffraction conditions 
are related to the Fourier transform of the electronic structure.
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What is the informations in a Bragg peak ? 

• Position

• Intensity

• Shape ���� FWHM

• Phase analysis (peak positions)
• Texture analysis (variation of peak intensity)
• Grain size – microdistortions (peak shape)
• X-ray Strain or Stress analysis (shift of peak position)
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What is the crystallite size ? (DCD≠grain size)

ΦΦΦΦ

ψψψψ εεεε
δδδδ H

D

Cylinder

D = 3εεεεF/2; D = 4εεεεββββ/3

εεεεββββ/εεεεF = 1.125

Sphere
(Langford & Louër, J. Appl. Cryst. 15, 20,1982)

Fourier analysis

Weighted Diameters

surface <DA> 
volume <DV>

(Krill, Birringer, Phil. Mag. 77, 621, 1998; Langford, Louër, Scardi, J. Appl. Cryst. 33, 964, 2000)

Log normal distribution
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1-Scherrer crystallite size:

B
s cos.B

K
D

θ
λ=

2
.inst

2
.meas

2 BBB −=

nmicrostraisize BBB +=

K~0.9, θ = Bragg angle
B: FWHM of the peak after correcting from instrumental 
effects (broadening caused by the diffractometer).

2-Separation of crystallite size and microstrain:

Some methods consist simply to write that the broadening is the sum of both size and microstrain:

In this equation, the broadening is due to the finite size of the crystallite. Indeed, for  very small
crystals the intensity of x-rays at close to, but not exactly, the Bragg condition is not zero.

θη tan.2.=nmicrostraiB

θη
θ

λ
tan.2.

cos.
+=

D

K
B

*.
1

d
D

ηβ +=
d

1

.D

1cosB η+=
λ

θ

η microstrain

XRD peak broadening is a function of the convolution of instrumental and microstructural 
broadening (such as grain size, microstrain, strain gradients, dislocations,…)
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3-Warren-Averback crystallite size and microstrain:

The warren averback method is based on a Fourier analysis of the diffraction peak. The measured
peak profile h(s) is actually the convolution of a function for the pure peak profile f(s) and a function
for the instrumental broadening g(s):

h(s)= g(s) * f(s)

This can also be represented by the product of the Fourier transforms for instrumental broadening:

FT(h)= FT(g) . FT(f)

( )( ) ( )( )∑
∞+

−∞=
−π+−π=

L
00 Lss2sin).L(BLss2cos).L(A)f(FT

Where A(L) and B(L) are the cosine and sine coefficients and L is the length of a column of unit 
cells perpendicular to the diffracting planes. A plot of A(L) versus L is used to determine the area 
weighted crystallite size La and lattice microstrain. If two peaks of the same plane family are used
in this analysis, the contribution of microstrain to peak broadening can be separated from the 
crystallite size.
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Examples of convolution :

The convolution of two gaussians is another gaussian:

On this picture, convolution of a lorentzian function
(which can be assumed to represent the real sample
intensity distribution) and a rectangle function results
(which can be assumed to represent the instrumental 
intensity distribution).

Iinstrum

Imeasure

Isample

�In black the measured intensity distribution � 0.00745
�In blue the instrumental � 0.00333
�In red the sample � 0.00666

FWHM: 
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Fourier analysis:

0
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A periodic function (with period a) can be decomposed into an infinite Fourier series of sine and 
cosine terms:

∑
∞+

=







 π+






 π+=
1n

nn0 a

nx2
sin.B

a

nx2
cos.A2A)x(f

In the case of x-ray analysis, the diffraction peaks is considered periodic : 2s0

-Calculation of An and Bn
-instrumental corrections
-plots of An and Bn vs t=n/2s0
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Gaussian - 
FWHM =0,0094

Information on crystallite size and microstrain, 
the separation of these parts can be made if 
several orders of a peak are studying.
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●Grain size evolution:
annealing effect � diffusion � grain growth (ex: O. Proux et al.)
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1-Phase evolution: elaboration of TiC by ball milling.
From two powders, pure Ti and pure C, TiC is elaborated by ball milling

2-before the phase transformation, the evolution of the Bragg peak shape can be observed. 
As for example, intensity decreasing and disappearence of the first Bragg peak of C. 
Decreasing of the intensity and broadening of Bragg peaks of Ti. 

Example of measurement of grain size and phase evolution: (Dubois et al. LMP Poitiers)

ball milling � high density of dislocation and decrease of the diffracting coherent domain (DCD) or crystallite.
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y = 0,00300x + 0,00157

R2 = 0,96969
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TiC crystallite size : 70 nm

TiC intensity Area
hkl 2theta FWHM IB Ka1 Ka1

111 35,87 0,2588 0,3411237 423,6 144,5
200 41,6727 0,2587 0,36231217 652,2 236,3
220 60,4283 0,3919 0,41710324 324,5 135,35
311 72,3553 0,4422 0,47086801 168,2 79,2
222 76,1324 0,4502 0,47866205 86,7 41,5
400 90,8177 0,3614 0,56766257 51,21 29,07
331 101,8104 0,6449 0,68514851 50,5 34,6
420 105,55 0,4632 0,72781065 118,3 86,1
422 121,4724 0,6086 0,95583596 95,1 90,9
511 135,4454 0,8179 1,28478964 61,8 79,4

What about the TiC elaborated ?

Step 2: 
Then diffractogram on LaB6 to 
perform the instrumental 
correction
Step 3:
Williamson-Hall plots , i.e. Int. B. 
vs 1/d (or d*)

Scherrer’s equation
does not lead to the same values:
the crystallite size increases with

diffraction angle from :

hkl size (nm)
111 51
200 48
220 48
311 46
222 47
400 47
331 48
420 48
422 56
511 69
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●Grain size evolution (WH plots):

*.
1

d
D

ηβ +=

the peak broadening is strongly anisotropic
with respect to the crystallographic
directions <hkl> (Ni specimen) 

�Contribution of anisotropic elasticity
for deformed metals.

�To check this assumption, we substitute 
d* with d* / Ehkl, where Ehkl is the 
elastic modulus at the crystallographic 
direction <hkl>. (slide 110 case of Ni)

N.B.: it must be noted that other 
microstructural factors may also 
have an effect on the anisotropic 
peak broadening.
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●Grain size:

In Fourier analysis, the measurement should be performed over a wide range in 2theta. It is
recommended to record at least four to five times the breadth of a peak on either side, and to compare 
the background of a standard and the pattern to be analyzed; the background in both should be the 
same. These precautions will minimize oscillations in the coefficients. The peaks to be analyzed should
be at least 20% broader than the standard peaks. 

Example of the effect on the range of measurement on the Fourier coefficients:

Consider a Gaussian function:

00942.02ln22FWHM =σ=

x = the centroid of the peak =0
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Gaussian Function
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●Grain size:

20 40 60 80 100 120 140
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1.2

Fourier coefficient for 2 cases:
�case 1: over a range = 2 x FWHM
�case 2: over a range =10 x FWHM

Ratio of Fourier coefficient for 2 cases:
-Fourier cas 2/fourier case 1
-Fourier cas 2/real fourier coefficient
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For the gaussian function, we saw the effect of the range investigation on the value of the 
Fourier coefficients.
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Oscillation of the Fourier coefficient, if the range 
decreases (ex. here for range [-0.008, 0.008])
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●Grain size:
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Gaussian - 
FWHM =0,0094

Fourier coefficient An vs t=n/2s0 for two analytical functions : Gauss and Lorentz 

-0,1

0,1

0,3

0,5

0,7

0,9

0 50 100 150 200

range [-0.2;0.2]
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Lorentzian - 
FWHM = 0,01

The effect of the scan range depends of the shape of the Bragg peak. Particularly of the shape of the 
bottom of the Bragg peak.

0

0,2

0,4

0,6

0,8

1

-0,05 -0,04 -0,03 -0,02 -0,01 0 0,01 0,02 0,03 0,04 0,05

Lorentzian Function

Gaussian Function

λ
θ

−
λ

θ=− Bragg
center

sin2sin2
ss

Reciprocal space units



P.O.R. 106

An
•• Example of Fourier analysis

Size :εεεεF = 224 Å

Reflexions
{4 0 0}
{8 0 0}
{10 0 0}
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a)

Williamson-Hall plots 
(microdistortion effect):

CdF2 Zener anisotropy Az = 0.56 BaF2 Zener anisotropy Az = 1.03
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Lorentzian Function

Gaussian Function

2theta(°)

● Pseudo-voigt: PV= a.G + (1-a).L
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●Pearson VII

m=1 Cauchy
m=2 lorentz
m=∞ Gauss

Williamson-Hall plots (size effect):
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