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Texture analysis

Outlines:-stereographic projection
-crystal orientation
-pole figure
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The Stereographic Projection

What is a stereographic projection? For illustration, let us consider cubic systems

e Using the inclination of the _ * Angles between two planes:
normal to the crystallographic -Circles ABCD (passing through
EISQEI Ex: {100} poles of a cubic the center of the sphere)

-Pi normals to the planes
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Stereographic Projection : to represent in a plane \aw complex phenoma which append in the 3D
space.

Pole sphere

A Z
/ Pole sphere

Proj.

Plane

representation

in the G plane
y orinaplane//

to G

-joint P to Z

Z - Projection p = intersection
P.O.R-partll (inversion center) of PZ with G 3



plane // to G
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-jointPto Z

-Projection p = intersection of
PZ with G,

-Or p’= intersection of PZ with ¢’



If we consider a given plane (blue circle) and seveiraiation (and pole) in this plane, the
projection of this plane is represented by a curvéaenplane C’0.
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Meridian of the
WAUIff net.

2) The 2 poles directions D1 and D2 belong to the sameeridian
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PROJECTION

W (B

The Stereographic Projection

Wu!ff net

»

VK

projection plane

basic circle

reference
sphere

point of
projection

SECTION THROUGH
AB AND PC

P's_P

Stereographic projection superimposed on Wulff net for measurement of angle between poles.
The WuIff net is graduated at 10°intervals for illustrat ive purposes. (angles on the stereo. Proj. ?)
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(001) and (011) Projection of cubic crystals

The angle between any two direction hh, +kk, +1
[h,k,l,] and [h,k,l,] can be calculated cosp= 2 22 L2 1l __
from: ‘/(h +Kk %+, Xhz + K, +|2)
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* Solid materials (including thin films), when processed and synthesized develop
crystallographic domains with a range of orientation and size distributions and
morphology.

Orientation O2
Orientation O1

s

d]

X

*Crystallographic texture is defined as the preferred alignment of the crystallographic

orientations in a polycrystalline medium.

*Textures or preferential orientations can developed during grain growth, heat

treatment, plastic deformation,...
P.O.R.-part I
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* A stereographic projection, with a specified orientation X
relative to the specimen shows the variation of pole
density with pole orientation for a selected set of crystal
planes. You just have to keep in mind that the reflected
intensity is directly proportional to the diffracting Xy
volume. .

 Example: [100] pole figure for cubic material

NERjuAN DR

(@) No texture (« isotropic texture ») (b) textured=single crystal (c) Fiber texture
F.U.K.-part i 1



*How to perform a pole figure ?

eChoose appropriate receiving slit. The larger are the slit the smaller are the intensity
corrections. But this reduces angular resolution, both for 2theta and for texture. For each
application a compromise must be chosen (which is different for relatively smooth textures
(e.g. deformed metals) or for very sharp textures (e.g. epitaxial films).

e The ideal specimen should have a flat surface and a roughly circular shape (with a
diameter larger than 2 cm)
Perform theta-2theta scan over a Bragg peak to determine the true value of 2theta

Check for different value of chi (e.g. 409 with a th eta-2theta scan if the value of theta is the
same (otherwise the sample height is probably incorrect or you have strong residual stress)

Once the appropriate 2theta value chosen, perform the (phi, chi) scans. A pole figure is
scanned by measuring the diffracted intensity at different (phi, chi) settings.

 Measurement of Pole figure:
-at a fixed 20 angle (crystal orientation), a complete Phi scan (spins the

specimen about its normal) can be preformed at a each specific tilt angle (Psi).

-Taking several Phi scans between 0 and 85°can be p lotted in 2D, the
so-called Pole Figure. The latter represents the orientation distribution of one
plane of the crystal lattice. For example, a psi step of 5°and a phi step of 5°
can be used.

P.O.R.-part I
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 How to perform a pole figure ?

« Defocusing
Due to the decreasing inclination of the specimen surface to the x-ray beam, the beam
covers a larger area at high angles chi. As inclination ( V) of the sample increases, the
peaks in the diffraction pattern are broadened. Thus the measured intensities can be
corrected by measuring a defocusing scan on a texture free sample (preferably of the
same composition). If such a sample does not exist, defocusing corrections can be
estimated from the stored data.

« Background Corrections
-The intensities derived from a pole figure must be background corrected.

-Background measurements can be performed on the same sample that the pole
figure was made on.

-A powdered sample of the same material can also be used for this purpose.

N.B.:-It is important to verify periodically that the measured intensities have not
changed significantly on a standard sample. Changes can indicate
misalignement of the goniometer, malfunctionning of electronics or deterioration
of detector or x-ray tube.
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Typical to measure three PFs for the 3 lowest values of Miller indices.

Why? A single PF does not uniquely determine orientation(s), texture components
because only the plane normal is measured, but not directions in the plane (2 out of 3
parameters). Multiple PFs required for calculation of Orientation Distribution

Random texture or isotropic texture [=uniform dispersion of orientations] means same
intensity in all directions.

X-ray beam becomes defocused at large tilt angles (> ~609; measured intensity from
random sample decreases towards edge of PF.

Defocusing correction required to increase the intensity towards the edge of the PF.

The combination of the 6-28 setting and G0x) 0 150 30 45 60° 75
the tilt of the specimen face out of the

focusing plane spreads out the beam on

the specimen surface. 20 = 20° O O 0

Above a certain spread, not all the
diffracted beam enters the detector.

Therefore, at large tilt angles, the
intensity decreases for purely wewr () () () ﬂ /
geometrical reasons.
-> This loss of intensity must be
compensated for, using the 20=60 0 0 ( (] //

defocussing correction. Moreover,
: : Change in shape and orientation of the irradiated spot on the
P the absol_rptlon Correctlon_ has to be sample surface for different sample inclinations as a function 14
%&f@ﬁ’ﬁ |'n the case of thin films. of tilt angle and Bragg angle (Bunge).



Coordinate systems and Coordinate transformation

The aim of the pole figure is to give some information on the specimen’s microstructure,
l.e. the arrangement of grain orientation of the polycrystalline thin film. For this, we use
some special coordinate systems (only right-handed cartesian coordinate systems are
used); the more used are:

Crystallite coordinate system C  (unity vector Ci):
the axes are parallel to the symmetry axes of the

considered crystal, i.e. the corresponding crystal K
lattice.

Specimen coordinate system S  (unity vector Si):  C3

the 3-axis is the specimen’s normal (ND), the 1- and : /
2- axis correlate with the symmetry directions in the v
surface (as for example the rolling direction (RD) X,
and the transverse direction (TD) in the case of

rolled specimens. v

Laboratory coordinate system L  (unity vector Li):
the laboratory system is connected with the direction
of measurement. If the measurement is performed
in the direction m, the L3 axis is parallel to m. The 2-
axis lies parallel to the specimen’s surface.
Obviously, the direction of the vector L1 is fixed too
as the product L2AL3.
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RD

N
[
W /
At -
ND
Specimen coordinate system on a Orientation of the laboratory system relative to the
stereographic projection (often used for specimen system

rolled specimens)
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Coordinate transformation
X,

* Using the specimen system and the

X
crystallite system : / 2
‘ e
><1
v
° we can describe the orientation of a crystallite within a polycrystalline medium by

specification of the rotation r, which transforms the laboratory frame X, into the
crystal system X.. This may be written symbolically as

XC = r.X|_

A pole figure is a graphical representation of the angular distribution function of
a chosen crystal direction g with respect to the Sample Coordinate System S.

* |t means that the equatorial plane used in the spherical projection is a plane of the
Sample Coordinate System

— In the case of a sheet, it is the sheet plane,

— for a wire - the plane orthogonal to the wire axis.
P.O.R.-part Il 17



eThe orientation of a crystallite in a polycrystalline material can be described in respect
to the specimen system and is given by the transformation matrix P that connects the
crystal C and the specimen system S. The matrix elements Pij are the cosines between
the vectors Sj and Ci.

e |t is often useful to express the orientation between the specimen system and the
crystal system by the 3 Euler angles (¢l1,@,@2) or by the Miller indices {hkl}<uvw>. {hkl}
represents the lattice plane that lies parallel to the specimen’s surface and <uvw> the
lattice direction parallel to the specimen’s 1 axis. (In the litterature, different angle
notations are used, for a complete review see the book of Bunge).

® The specimen system can be aligned to the crystal system by applying the following
consecutive rotations of Euler angles (see animated next slide).

X3

P.O.R.-part I 18



To the definition of the Euler angles

First rotation @

3= €= second rotation b

C,=e”,= e’ [010] third rotation @,
(pl C2:e”,2

- C,=e”, [100]
()

e1l:e”l

€=

First rotation f1 around S3 transforms S1 and S2 axis in the new axes X1' and X2'. The second rotation f around X1’ axis has to align

the S3 axis to the C3 axis and transforms X2’ to X2". The third rotation f2 around C3 aligns X1’ to C1 as well as X2” to C2.
Pf).l?i.-partqf 19



e The orientation distribution function (ODF) describes the relative frequency of the different crystal
orientations in the polycrystal, that is the fraction of crystallites of the samples that possess the
orientation g+dg .

It will be noted as f(g), g stands for the orientation expressed by the Euler angles: f (¢1,¢
,@2). It is normalized:

1 .
# [f(gdg=1 or 8“—2m f (41, ®,42)sinPdgdPdg, =1

e Random distribution means that f(g)=cst=1. The so-called texture index F2 is equal to 1 for the

isotropic texture case. F2>>1 denotes a strong texture: 1 2
R =—[lf(@)]dg
8n

e Usually the ODF is graphically plotted as contour lines in the Euler space (¢1,9,¢2) for ¢l=constant
or @2=constant.

e |In textured materials some orientations are highly occupied with crystals whereas other orientations
are less represented. Besides, the ODF, the orientations of the mainly present crystallite groups can
serve to describe the texture state of a material, using the {hkl}<uvw> notation.

e Crystallite group g means the ensemble of all those crystallites have the same orientation g.
Although spatially separated, for calculations of the average elastic behavior the can be treated as
one crystal. We will see that for stress analysis method in the next chapter.

P.O.R.-part I 20



Representation of ODF:

The ODF is graphically plotted as contour lines in
the Euler space (as for example here for
g2=constant). The orientations belonging to
different combinations of angles may be
physically identical (due to the symmetry of the
crystal lattice. It is therefore only necessary to
consider the ODF in a part of the total range of
angles of the Euler space.

Complete view of ODF in the Euler space:

P.O.R.-part I
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The case of fiber texture: [111]

S3
A

S1

v

Cross section

———————> Sl

S [

: f+=161
Top view

Consider a thin film (700 nm thick) with a columnar microstructure in which the (111) planes are
parallel to the surface, but randomly distributed in the plane of the surface - this is the (111) fiber

texture

If we perform on common theta/2theta
measurement on this specimen, we will
obtain only diffracted intensities for (hhh)
planes.

Indeed, in a theta/2theta scan, only the
planes parallel to the surface can
scatter.

N.B.: As you can see, the relative
intensities of (111) and (222) peaks do not
correspond to the one expected, why ?
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pole figure {11 1)
1]

figure de péle (111)

LY

A

1
!

Different view of the {111}
pole figure on a gold thin
i film, TEM micrograph
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As already written, for thin films the effect of absorption and volume on the effective intensity has to
be taken into account. This effect as a function of the inclinaison angle and sample thickness is
expressed by the factor:

F(x,0,t) =1—-exp - 2H

SinB.cosy
Au mass absorption coefficient in cm?3/g 208
density in g/cm3 19.3
1.8
1,6 /I/
14 ——
'5 2 W — )
S 1 % —
% 0,8 —e— thickness 700 nm
20,6 —=— thickness 400 nm
@ 0,4
c
20,2
£
0 T T T T
0 20 40 chi (9 60 80
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The case of fiber texture:

Complete view of ODF in the Euler space:

P.O.R.-part I

(b)

?,

u-l-l.]" r.p:::n"‘ m_gm“ q:zn-li"“
9,=20" #7257 9 NP =1y
=401 9451 9=50" =55
= ﬁnhﬁr l!lzl-"'l"l.'l' pll']'ﬁh

[ w® we % @,=const

Representation of ODF:
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Epitaxy :
Poles figures

Mo(002) Ni (220) 9=90

// LN
/ // \
5 <

AAAAAAA A
\ 4»..4,‘ //
\ C \ / @=0
\
\\Ri\%\ /7
RN .
k'\k\‘\
L imm

TEMHR
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Epitaxial Relations:
[112] (111) Ni // [110] (110) Mo
[110] (111) Ni // [001] (110) Mo




1l
Anisotropic Elasticity

Objective

eThe objective of this lecture is to provide a mathematical framework for the
description of properties, especially when they vary with direction.

e A basic property that occurs in almost applications is elasticity. Although elastic
response is linear for a lot of practical purposes, it is often anisotropic (composites,

textured polycrystals etc.).

P.O.R.-part I



Example of non-linear properties:

e An example of non-linear mechanical properties is
plasticity, i.e. the irreversible deformation of solids.

e Rocks display unique elastic behavior. They are
extremely nonlinear, being hysteretic, possessing
discrete memory, and having slow dynamics [a long
term memory of strain]. Although some of these types
of nonlinearities may exist in, for example, powdered
metals, it is rocks where these characteristics were
first observed. The class of materials includes rock,
damaged solids, and, compressed powdered metals.
Further, nonlinear behavior plays a central role in
developing new methods with which to characterize
material properties, for instance, interrogating the
elastic microstructure of rock, determining if a material
Is damaged, or monitoring progressive damage.
Nonlinear attributes of rock have important

consequences on processes in the earth such as [

earthquake strong ground motion, reservoir
subsidence, seismic wave propagation and
attenuation, stress fatigue damage, hydraulic
fracturing, etc.

e Stress-strain curves for (1) unfilled, (2) lightly filled and (3)
highly filled rubber in tensile deformations.
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Linear properties

e Certain properties, such as elasticity, are assumed to be perfectly linear.
This means that we can write in the case of elasticity that the strain is
proportional to the stress

o=Cc¢
where C is the stiffness tensor

For uniaxial tension test or one dimensional case, C =Young’'s modulus (or
elasticity modulus) E.

e For isotropic materials, the Hooke’s law can be used:

1+v v : : , :
gjj = g;ij ~—[Bjj |01+ 09y + 033 where v is the Poisson’s ratio
E E and dij : kronecker’s symbol

Gjj = 21 [ + A L9 (811+ €yo+ 833) where A,u are the Lamé moduli
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Elasticity
BUT:

e Elasticity: this property requires tensors to describe it fully.

e Even in cubic metals, a crystal is quite anisotropic. We will speak of local
anisotropy. For example, the [111] direction in many cubic metals is stiffer than the
[100] direction.

e In cubic materials, 3 numbers or coefficients or moduli are required to fully
describe elastic properties.

e isotropic materials only require 2, as for example v and E or A and U (see Hooke’s
law on the preceding slide). They are also bulk modulus B, shear modulus G=_.
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Elasticity anisotropy

e First we restate the linear elastic relations for the properties Compliance, written S
or (sy), and Stiffness, written C or (c;) , WhICh connect stress, g, and strain, €. We
wrlte it first in vector-tensor notation W|th “:” signifying inner product (i.e. add up
terms that have a common suffix or index in them):

o=C:e
€E=S.0

In component form (with suffices),
O = Cij€x
€j = SijkiOk

e The definitions of the stress and strain tensors mean that they are both symmetric
(second rank) tensors. Therefore we can see that
= 52311011
_ = 53211011 = €23
which means that,

_ S2311 = S3211
and in general,
Siikl = Sjik
We will see later on that this reduces considerably the number of different
coefficients needed.

32



Stiffness in sample coordinate

e Consider how to express the elastic properties of a single crystal in the sample
coordinates. In this case we need to rotate the (4" rank) tensor from crystal
coordinates to sample coordinates using the orientation (matrix):

Cijkll = Qim ajn Ao aIpCmnop
e Note how the transformation matrix appears four times because we are
transforming a 4™ rank tensor.

Young’s modulus from compliance

e Young's modulus as a function of direction can be obtained from the
compliance tensor as E=1/s,,,. Using compliances and a stress boundary
condition (only o0;,#0) is most straightforward. To obtain s;;,,, we simply apply

the same transformation rule,

S'ijkl = & ajn Ao aipsmnop
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Matrix notation

e |t is useful to re-express the three quantities involved in a simpler format. The stress and strain tensors
are vectorized, i.e. converted into a 1x6 notation and the elastic tensors are reduced to 6x6 matrices.

For stress tensor:

011 012 013
021 Opp Op3|<—>|0g Op Oy |<->(01,02,03,04,05,06)

031 032 033

For strain tensor:

€11 €12
€21 €22
€31 €32

€13 )

€23

€33/

01 0O Os
Oy 04 O3
( 1.1
1
—& E —&
2 6 2 4
18 18 €
2 5 2 4 3

<-> (81,82,83,34,85’86)

The particular definition of shear strain used in the reduced notation happens to correspond
to that used in mechanical engineering such that ¢, is the change in angle between direction
2 and direction 3 due to deformation.

P.O.R.-part
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Work conjugacy

e The more important consideration is that the reason for the factors of two is so that work
conjugacy is maintained.

dW = ode = g;: dg = g * dg

Also we can combine the expressions ¢ =C:g and € = S:oto give:

o0 =C:So, which shows: | =C:S,or,C =81

Conversions of stiffness tensor:

e Lastly we need a way to convert the tensor coefficients of stiffness and compliance to the
matrix coefficients. For stiffness, it is very simple because one substitutes values according
to the following table, such that matxC,, =tensoC, .. for example.

Tensor 11| 22| 33} 23 32 13 31 12 21

Matrix 1 2 3 4 4 3 3 6 6
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C=(cij) =

P.O.R.-part I

Stiffness matrix
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Conversions of compliance’s tensor

e For compliance some factors of two are required and so the rule becomes:

Smn = PSijk

p=1 for(m=3 and n<3)
p=2 for(m<3 and n>3)orviceversa
p=4 for(m>3 and n>3)
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Relationships between elastic coefficients

e Some additional useful relations between coefficients for cubic materials are as
follows. Symmetrical relationships exist for compliances in terms of stiffnesses.

Ci1= (SitSPIA(S11-51)(S11+2S))}
Ci2= -S{(S11-S19(S11125 )}

Caa= 1Sy

e The relationships for S in terms of C are symmetrical to those for stiffnesses in
terms of compliances (a simple exercise in algebral).

Sy1= (CtC)H(C 11-Ci)(Cy1+2C )}

S12= -C{(C11-C1)(C11+2C L)}

S, = 1/C,,,

P.O.R.-part I
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Effect of symmetry on stiffness matrix

e Why do we need to look at the effect of symmetry? For a cubic material, only 3
independent coefficients are needed as opposed to the 81 coefficients in a 4th rank
tensor. The reason for this is the symmetry of the material.

e What does symmetry mean? Fundamentally, if you pick up a crystal, rotate
[mirror] it and put it back down, then a symmetry operation [rotation, mirror] is such
that you cannot tell that anything happened.

e From a mathematical point of view, this means that the property (its coefficients)
does not change. For example, if the symmetry operator changes the sign of a
coefficient, then it must be equal to zero.
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Example of the effect of symmetry on the stiffness matr IX :

Let's apply a 90°rotation about the crystal-z axis (axis 3),

C’ijkl = aimajnakoalpcmnop
And, because of the symmetry:
C=2¢C

Coo Cpp  Cog
Ca1 Ci1 G3
c Coz3 Gz Cag
Cs Ci5  Css
—Cos —Cig -Cgy
|—C26 ~Cis ~Cse

Cos —Co4
Cis —Cug
C3s5 —Czg
Css  —Cog
—Cs4  Cyq
—Cse  Cus

C is the tensor in the reference frame associated to the cubic lattice
C’ is the tensor in the reference frame obtained with a 90°rotation

P.O.R.-part I
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Using C’' =C (because of the symmej}rywe can equate coefficients and find that:

C11=Cpp C157Cy3 Cy=C3s, C1=-Cyp

and moreover

C14 C25 _C14 0

Thus we have also:

C14 C15 C24 C25 C34 C35 C36_ C45 C46_ C56_O

Ch G, G5 O 0 Gy
C. G, G O 0 -G
o Cs CGs Gy O 0 0
Finally: C' =
o 0 0 C, O O
0O 0 0O 0 C, C,
Cs ~Ce O 0 Cp Ceo_

P.O.R.-part I



Thus by repeated applications of the symmetry operators, one can demonstrate (for
cubic crystal symmetry) that one can reduce the 81 coefficients down to only 3
iIndependent quantities.

C11 C2 C2 O
C12 €31 C2 O
c=|@2 G2 ¢1 0
0 0 0 Cq4
0 0 0 0 Cq4
0 0 0 0 0 Cq4

In the reference frame
associated to the
crystallite system C

o O O O
o O O O O

Thus, the elasticity of a cubic material is completely characterized by
three elastic coefficients such as the 3 stiffnesses (or 3 compliances).

—>These become two in the case of isotropy (because c,,=1/2(c,,-C,,)).
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Cubic crystals : anisotropy factor or Zener’s factor

e If one applies the symmetry elements of the cubic system, it turns out that only
three independent coefficients remain: C,,, C;, and C,,, (similar set for
compliance). From these three, a useful combination of the first two is

C' = (Cll - C12)/2

o C' = (Cyy- Co)/2turns out to be the stiffness associated with a shear in a <110>
direction on a plane. In certain martensitic transformations, this modulus can
approach zero which corresponds to a structural instability.

e Zener proposed a measure of elastic anisotropy based on the ratio A=C,,/C".
This turns out to be a useful criterion for identifying materials that are elastically

anisotropic.
A= Xaa _ 281-512)
C11~7G12 S44
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Rotation of compliance’s matrix

e Given an orientation g;, we transform the compliance tensor, using cubic point group
symmetry, and find that:

Co_ 4 4 | 4 2.2 2.2 .22
S11= S11(6111 Tt a13}F 2512(61126113 tapap a116113)

2.2 2.2 2 2
tSgg\Q12013 T 112 + 143

e This can be further simplified with the aid of the standard relations between the
direction cosines, a,a = 1 for i=j; aya = 0for i#], (g.a = 9;) to read as follows.

117811~ Eo(afa%+a%a32 +a§af) with  So=S11-S12~ % Sa4
e These relation is also written as a function of I' (orientation parameter)
« 2( 1 jr - hAE +hA2 K42
1=174 17927744 with =
2 (hz Ny +|2)2
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For an uniaxial tensile test:

&) [S11 S12 Si3
€2 Sp1 S22 S23
€3 |_|S31 32 S33
€4 S41 S42 S43
€5 |51 S52 S53
€6/) [S61 S62 S63
— 1
€1 =351101

S14
S24
S34

S54
Se4

S15
S25
35
S45
S55
S65

S16
S26
S36

S46

S56

S66 |

o O O O O

By definition, the Young’s modulus in any direction is given by the reciprocal of
the compliance, E = 1/S’;;

P.O.R.-part I
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Anisotropy for cubic materials

e Thus the second term on the expression @iszero for <100> directions and, f§r0,
maximum in <111> directions (conversely a minimwng<0).

The following table shows that most cubic metalgehaositive values of Zener's coefficient so
that <100> is soft and <111> is hard, with someepkions like Nb, Mo and NacCl.

P.O.R.-part I

terial E<100> E<111> |E<111>/|
(GPa) (GPa) E<100>
bce Nb 152 82 0.54 0,51
bce Nb 145 83 0,57 0,55
NaCl 24 33 075 0.70 A<l
bcc Mo 384 287 0,75 0,71
202 W £ a1l 101 | 101 l—— |ocally perfectly isotropic
Fe304 214 243 1,14 1,16 |
foe Al 63 76 1.20 122
MgO 251 355 142 1.55
bce Ta 146 217 1.49 1.56
diamond Si 130 188 1,44 1.56
foo Ni 129 305 2 36 2 67 > A>1
bee Fe 119 283 238 2.70
fce AU 43 117 271 285
foe Ag 43 121 278 3.04
foe Cu 66 192 2.02 328 |/

46



Au : A=3
Locally anisotropic material
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$[001]

N

ZZIITIINN
[T

[010]

[100]

spherical polar diagram, that is, with a surface

a vector whose length is proportional to the value of Young’s modulus in the direction



What about the macroscopic elasticity ?

-if you have a random distribution of orientations of grains or crystallites, you have to
average over all orientations.

4 — D
%ﬂi‘i%\:}:\‘%\\\\\\\\}\\\\\
2 i
it |
b
Eﬁ'm\i‘l‘

sS2

[100]

Crystallite reference frame Specimen reference frame

Locally anisotropic crystallite :> macroscopically isotropic material

« Quasi-isotropic » materials
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-if you have a non random of orientations of grains or crystallites. Let us consider the
simple case of {100} fiber texture (i.e. (100) planes // surface and random distribution of
crystallites in the plane), you have to average over all orientations in the plane:

.
AN I
“‘\\\\‘% i

[

N
-\

N\

Crystallite reference frame Specimen reference frame

Locally anisotropic crystallite :> macroscopically anisotropic material

But in this particular case, transversal isotropy
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-if you have a non random of orientations of grains or crystallites. Let us consider the
simple case of {111} fiber texture (i.e. (111) planes // surface and random distribution of
crystallites in the plane), you have to average over all orientations in the plane:

Hi

Crystallite reference frame Specimen reference frame

Locally anisotropic crystallite [ > macroscopically anisotropic material

But in this particular case, transversal isotropy
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Summary

We have covered the following topics:
-Linear properties
-Examples of properties
-Tensors, vectors, scalars.

-Elasticity, as example as of higher order property, also as example as how to
apply (crystal) symmetry.

The basic relations we have described are necessary for the stress analysis using
X- and neutron rays, for the interpretation of the measured data and for the
calculation of averaged elastic properties and X-ray elastic constants (XEC) or
diffraction elastic constants (DEC).

The basic relations we have described are necessary for the stress analysis using
X- and neutron rays, for the interpretation of the measured data and for the
calculation of averaged elastic properties and X-ray elastic constants (XEC) or
diffraction elastic constants (DEC).
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Homogeneisation

e Stimuli and responses of interest are, in general, not scalar quantities but tensors.
Elasticity is considered as linear property but some of the properties of interest,
such as the plastic properties of a material, are far from linear at the scale of a
polycrystal. Nonetheless, they can be treated as linear at a suitably local scale and
then an averaging technique can be used to obtain the response of the polycrystal.
The local or microscopic response is generally well understood but the validity of the
averaging techniques is still controversial in many cases.

e There are many problems in which a non-homogeneous response to a
homogeneous stimulus is of critical importance. Stress-corrosion cracking, for
example, is a wildly non-linear, non-homogeneous response to an approximately
uniform stimulus which depends on the mechanical and electro-chemical properties
of the material.

- A polycrystal is composed of grains which are elastically anisotropic, and is
therefore strongly heterogeneous from the mechanical point of view. It can therefore
be considered as a composite. What are the effective properties of the polycrystal
or the composite ?
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e The question of the effective properties of a composite implicitely assumes that the problem
contains 2 scales which are well separated:

— The microscopic scale is small enough for the heterogeneities to be smeared out.

— The effective properties at the macroscopic scale of the composite are determined
from geometrical and material data available from the study of a representative
volume element. The geometrical and/or material properties of random composites
are only partially known through statistical informations, e.g. correlation functions of
various orders.

Whole specimen

e =

e In order to describe the properties of a material, it is useful to define a representative
volume element (RVE) that is large enough to be statistically representative of that
region (but small enough that one can subdivide a body).

e For example, consider a polycrystal: how many grains must be included in order for
the element to be representative of that point in the material?

P.O.R.-part I
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Homogeneisation

e A polycrystal is composed of grains which are elastically anisotropic, and is therefore
strongly heterogeneous from the mechanical point of view:

Crystallite = single crystal = well
known properties

\‘ What about polycrystal properties ?

= =mZE
U

In a polycrytalline material, the strains differ between grains and all grains interact with each
other due to the incompatibility of these different strains. As a consequence, the average
stresses in each grain also differ.

To determine the average stress in each grain, several assumption can be used

- from the most complicated ones (but realistic ones) : the self-consistent methods

-to the simplest ones (as Voigt > homogeneous strain or Reuss—> homogeneous stress).

- A %rain interaction model has to be used....
P.O.R.-part I 24



\Y;
X-ray strain measurements— Stress
analysis:

For x-ray stress analysis or neutron stress analysis, the
diffraction data are information at the microscopic level. A
Moreover, the diffraction information is only coming from a £ \
small part of the polycrystalline specimen. We have “I B
information on the diffracting volume alone.

How to obtain macroscopic stress o, (macroscopic residual
stress or applied stress) from microscopic strain

measurements (diffraction data) is the main question in
XSA ?

The principle is quite easy to understand:

-
Distanee
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eFundamental equation of x-ray strain determination:

The strain in the direction of the vector n (azimuth @ and polar angle ):

AXB
ey =£11c0L SIP Y +£pSi2 SIP Y +eggeody i
oy = €11C0S @ SIN“ P +€xoSIN" ¢ SIN" P +€33C08™ Y
+&12SIN2¢ sinqu + £13C0Sp SIN2Y + £93Sin¢ SIN2Y W
\_ J
>
X,
o ?
The strain in the direction n can be related to
the lattice spacing: /
Xy
d dgy —do
ER = 8(|)L|J =In oW = oW where d, is the strain free lattice spacing or stress

do dO free lattice spacing.

Conventional and Rational definition of strain
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If we can measure d0 and d,,, the fundamental equation of x-ray strain determination has 6

unknowns: €11, €22, €33, €12, €13, €23.
Thus, theoritically it can be solved if d,,, is measured along six independents directions. In

practice, more points are measured to improve accuracy.

d
Epy = In[%’j = sllcoszq) sin? P+ szzsinzcb sin? P+ 833C052 1)

+€15SIiN2¢ sin® P + €13C0SP SiN2Y + £53SiN¢ SiN2Y

In polycrystalline material, where it is possible to obtain a diffracted intensity for a lot of psi
angles, different d or d,,, vs sin?y behavior are observed.

A A

>0

(<0

v

v

v

Sirey Sirey Sirey

Texture material

isotropic texture and no shear stress isotropic texture and shear stress
- Oscillatory behavior

- Straight lines -> W splitting
57
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e Stress analysis:
_[1+v \Y ( )
Let us consider an locally isotropic material > % =| "¢ L5 _E_mij C11+022 %033

fg :1+V {c 0052¢+cs sSin2¢ +o sin2¢—o 3}sin2L|J
o~ P1r 12 22 3

The fund.eq. becomes:

1+v v ( )
OCan—— 044 +GCq+0O
E 33 E 11 22 33

— < +

1+v
+

{013.0031) +6555IN0 }Sin2L|J

i )

In the case of thin films (thickness < a few um) deposited on a substrate by PVD or CVD, a few
hypothesis may be used (and are often encountered in practice):

04,=0 / no shear stresses / equi biaxial stress state
. J
, . _ d 1+v _ \Y
This above equation becomes: Egy = In[ j’: j = 5115'n2¢ _ 25_011
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Experimentally, the measurement of reflected intensity is performed for a few different tilt angles
(different Y angles), and the following equation can be plotted:

1 1+v 2 v

sinByy, E E sinB
@ 1 If the elastic constants of the material are known:
.(7) ]
= slope 1+
‘_E -\ slope= 611 E— stress

mtercept

SIrfY

But, there are two unknowns in the above equation: the stress o, AND the position of Bragg
peak for the stress free specimen 6, i.e. the stress or strain free lattice parameter a,,.

—> Several possibilities are encountered to solve this problem:
-the simplest one is to estimate first the slope, and to obtain the stress
-then from the origin ordinate, you calculate the strain(or stress) free lattice parameter
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If we removed one of the three preceding hypotheses we have done on the stress state, the
experimental procedure is the same but the measurements have to be performed in other
directions (i.e. several phi angles).

Example: the stress are no more equi biaxial, the measurements are performed for two phi angles

= =
0 =\ _slope 0
2~ P ;:L< — alope
o \intercept o Intercept
SIrfY ] SIrFY ]
@=0° ©=90°

If 011 # 022, the slope for f=0°will be different from the slope fo r f=90°

If now there are also shear stresses, the measurements have to be performed for negative
and positive psi angles and also several phi angles.
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Locally false

e Stress analysis:

Let us consider a locally non isotropic material >
(but macroscopically isotropic)
Macroscopically true

+
Epy :\%{cﬂ.cos2 ¢ +0,,5iN2¢ + cszz.sin2 ¢ - 033}sin2 U
The fund.eq. was written as:

N
— + 033 }%11 Gyt 033)
+ - -
+ 613-.COSP +6,3.SiNG [SIN2P

By analogy, X-ray elastic constants have been introduced:

hkl
1+v 1k <£§21k|> :1+_V
Where obviously

_é o oK <§fkl>hklz_

P.O.R.-part Il (for relations of XEC see for example : Hauk book)



4 Voigt: )
hkl _ _3 C11+4C12 — 2044 1 ohkl _ O
S1 - =S," =
6(cr1-cro+Xag)er1+ 2012) 2 2C11 — 2015 + 6Cyy
N\ J
/ Reuss: \

$ =5y v

with

1
SO 2511‘512—5344

\_

1
589“ =511-S12 ~ Bl

h2k?2 +h?2 + k242

- (h2+k2+|2)2

/

P.O.R.-part I

[=orientation parameter
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Indeed as we have already seen, the Young’s modulus is direction dependent. Thus, the x-ray strain
measurements will differ from a plane family to another:

Z =
L slope L
=2 K slope
= [ intercept o iIntercept
Sirty Sirty
Measurements on {h00} Measurements on {hhh}

For the same stress state, the slope will be larger for a softer family. For example, consider a
polycrystalline material which is elastically anisotropic (A=3), the slope of {h00} family will be larger
than the slope of {hhh} family.
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eThe determination of X-ray elastic constants (XEC):

Several models of grain interaction may be used. The two simplest are:

-Voigt —>isodeformation
-Reuss - iso-stress

The most realistic models are:

-Hill-Neerfeld —-> average of the 2 above models (experimentally this
model is quite good but it has no physical justification)

-Kréner-Eshelby models—> the more realistic (but mathematically a little bit more
complex)...
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eEXxperimental errors:

Phase identification and particularly stress analysis rely on peak positions. Thus, we have to
know something about the instrumental errors !!
The instrumental errors may be classified into 2 groups:

-> errors dependent on beam optics,

—> errors dependent on alignment.

All these errors can be checked with standard specimens, i.e. specimens for which you
perfectly know the lattice parameter, the texture, the residual stress state.

For details of influence of each parameters, you should refered to the books cited in the first
slide.

If we consider that we have no problem with optics, let us interest to errors which originate
from instrumental misalignment: sample displacement from the center of the goniometer,
effect of psi axis not corresponding to the 2theta axis.

The first thing to do is to put the specimen on the center of the goniometer !
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Instrumental errors

\ true peak position
\ false peak position

The error due to the sample displacement depend on 2theta angles:

0,09

0,08 ~
0.071 \ — Error for 6/28 ¢onfiguration

0,06 — >
© 0,05 - for R=20 cm and h=50pm

N
<0,04 A
0,03 A
0,02 A
0,01 ~
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Moreover, if the specimen is displaced from the center of the goniometer, the error in 2theta
angles will depend on the psi angles.

Displacement in the psi geometry:

Simple case (only error displacement of general case-error displacement of the
the specimen) specimen and x-ray beam not on the psi axis
0,4
0,35
_ o 0,3 —+— 2theta=120°
The peak shift between Q=0 and y is given by: 0,25 e 2theta=60°
2 0,2 /

0,15
2 1 ’
A20 =—.coB, h, -1 1 ,
~ €0 ( (cosp ]+x anq,l] 000; o
' A,%o//

0 w T T
0 20 40 60 80
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If you perform x-ray stress analysis (XSA):

0,699 0,145
0,698 - 0,1448 !
o 0,697 10,1446 | 2theta=120°| /
< 0,696 ; 0,1444 /
2 0,695 |~ 2theta=60° A 20,1442 /
£ 0,694 / = 0,144 —
0,693 7 0,1438 D
0,692 | 0,1436 ‘ ‘ ‘ ‘
0 0.5 1 0 02 04 06 08 1
sin2y sin2y
For 2theta=60° slope=17.5x10 4 For 2theta=120° slope=3.37x10 4

This means that for an position error of 50 um (x and h), we will obtain stress in the sample.
And the stress values are 5 times higher at 2theta=60°than 120°!!

- You have to pay carefull attention to the installation of the specimen on the goniometer...

P.O.R.-part I
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How to perform experimentaly stress analysis ?

-choose a Bragg peak, and perform
theta/2theta scans for a set of psi
angles

F11-22h-00.NJC STRESS 1 «<Phi=0.0%, Psi=-80.0° ... 80.0"=

Intensity / cps

cr-aupert-107-vWW-211-22h-00.MNJC Scan 60

207
o 15—_
o
o i
= ]
C 107]
m 4
E ]
57
] T I

T2 T4
2 Thetar? { Scan Axis 2.1 svm. )




How to perform experimentaly stress analysis ?

W-211-4h-00,NJC
20 Center of Gravity
73,5534 73,5535
72,7901 72,7906
72,6599 72,6606
72,7355 72,7363
72,8686 72,8679
72,9105 72,9116
73,2034 73,2022
73,3743 73,3741
73,4746 73,4734
73,5482 73,5487
D)
=
2]
~
—
-
c
-l
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FWHM
1,7871
1,7096
1,8469
1,572
1,6398
1,7464
1,3791
1,7634
1,8174
1,8099

Inetto int

15,07
9,43
8,82
9,86
9,28
6,45
5,55
9,37
14,02
15,83

Inetto integral SIN(W?)
35,33 0,88302222
20,42 0,28081443
21,39 0,22040355

21,6 0,28081443
22,63 0,3454915
15,94 0,41317591
10,92 0,67101007
22,67 0,8213938
34,52 0,88302222
36,18 0,9330127

sans correction avec correction

LN(1/SIN®) avec correction pente pente
0,51299811  0,514019322 -0,014317445 -0,015117299
0,52197194  0,52335973 ordonnées origine  ordonnées origine
0,52351517 0,5245805 0,526393269 0,527721417
0,52261865  0,523574504 coeff. Déterm. coeff. Déterm.
0,52104327 0,5220631 0,991350926 0,996777678
0,52054813  0,521539969

0,51709743  0,517889843 sigma (Gpa) sigma (Gpa)
0,51509252  0,515583494 -4,6 -4,9
0,51391877  0,51442639 a0 (Angstrom) a0 (Angstrom)
0,51305882  0,513522535 3,17413 3,17724

0,535

0,53

0,525

0,52

0,515

0,51

—e— Sériel
—m— Série2

0,2

0,4

0,6 0,8 1

1,2

Sin2y

W/WC multilayer
Total thickness 200 nm
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Example of XSA:

W-(211)

0.090 —

4

20 7 0.089 +

15 - __ 0088 +
D
£

% £ 0.087 +
Q 10 ~
E <

0.086 +

0.085

0.084 \ ‘ ‘
0.00 0.20 0.40 0.60

122 127 20 (() 132 137 142

sinzy

. 1\ _1+v .,
200 nm tungsten film on |n( )= " gsin 17 -2V0+|n(
E E Sing,

oolyimide: Sind

= 2° shift of the peak position p_ 5= .23 Gpa M 8>3k
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Example of XSA:

Stainless steel thin film deposited by PVD onto kapton substrate

Polycrystalline non textured and 340 nm thick

Top view

P.O.R.-part Il 72



Example of XSA:

3000

Intensité { cpz)

Polycrystalline isotropic (D ~ 10 nm)

W {211} - y=0°

P.O.R.-part I

[an]
W
So—
—
B
=

Intensite (cps)

5000

4000+

3000

2000

i AT
1000

W {211} - y=634°
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X-ray strain analysis

e [Sotropic or quasiisotropic thin film (tungsten):

(classical singy method)

e (111) textured anisotropic thin film (Gold) :

— + —
oy, = (szz cll{msm@ +20_)sin2¥ +WCOSZ€D ~ CDG)sinZ‘P}

62

+
i (szz i 011{25“ 46512 44 4 324 sin ‘P}

(Crystallite-group method)
P.O.R.-part Il
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P.O.R.-part Il

Gold thin film deposited on kapton substrate

Average slope/
Applied load /
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Gold thin film deposited on kapton substrate

0.0025 (420} _
0002 |+ EXxperiments p e
0.0015 CGM (Slj simulated) {42;/
0.001 = )
0.0005 - {420} (331} 2 —
S / T1
0 {422} pr— —
/\\ ‘ = ! == |

00005 7\ 04 0.6 s 222 ]
7

-0.001

-0.00151222} (3313

sinz2y

-> Several Bragg'’s families AND - no more linear
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Another example: X-ray diffraction measurement of thermal strain in InSb-
based devices

Hybrid Focal Plane Arrays (FPA) Technology
Backside-illuminated InSb IR Detector Arrays
High Fill Factor / High Sensitivity

[ R
InSb ﬂ r10um

/ Detector Array

/ Hybridization

Indium Bumps + Stick

Silicon Signal Processor
Readout chip

Working Temperature : Liquid Nitrogen
Problems upon cooling

Example: Cleavage of the thin brittle InSb layer
P.O.R.-part I
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Some mechanics;

S;
Elj = <ijkl Okl
B 011 0 0
| C_)': 0 0'11 0
! 0O 0 O
L,
For Silicon: For InSh:
83// [001] S3//[111]
S S S 0 S 0
Si1 S S O 0 0 .11 |12 .13 ]:5
Si2 S11 S 0 0 O S|12 Slll S|13 0 -s15 O
Si2 Si2 Si1 0 0 0 s13 S13 S33 O 0 0
0 0 0 S44 0 0 0 O O S'44 0 S|46
0 0 0O 0 Sy O Sis -Sis 0 0 Sa O
0 0 0 0 0 844 0 0 0 3'46 0 3'66
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Some mechanics

For the specific orientation of the two single crystals, the mismatch of CTE
induces a quite simple equibiaxial strain tensor (i.e. which is isotropic in the

i

\

€11=€22 = (S117S12).011
€33 = 513.011

o &jj =Sjjki Okl
< ) s

\I:> Epw :(811—833).Sin2l.|J +£33/

IlO(]( _ IlOOr(

_linsbrsi ~"insb
EInSh/si = |150K .

<
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[11-2]

< |

> [1-10]

d
‘v ﬂ”[f}'”[f} _ 2
0 0 5(// —(511—533).sm ¢/+£33 and
\_
Y s =g :(s' g )a
|n(a )z(g e VsinZyse +|n(a) 11~ 22 " P117°12/%11
w) 11 “33" 33" "o o
33~ %1311
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Acykar = 0.15406 nm

Probing depth in InSb

1.5umto 3 um
InSb (333) (444)
20 76.29 110.89
1] 0 0
sin?y 0 0

Mass absorption coefficient (cm?3/qg)

Indium (In) 243
Antimony (Sb) 270

P.O.R.-part I

(111)ty (424

(008) (117)

Single crystalline (111) InSb

(224) (551) (117) (008)
71.23 116.19 116.19 143.97
19.47 -27.21 43.31 54.74
0.11 0.21 0.47 0.67
density (g/cm3)
7.31
6.697
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Experimental Set-up

Home-made Cryostat XRD 3000 - SEIFERT

Samples :InSb arrays hybridized on Si (625 pm or 100 um) on AIN (a # aS')

or Al,O; (a > aS)
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| {arbitrary units)

:

Bulk stress free InSb

g

300 K

:

:

:

:

:

=]

1108 1109

100 K

111
26(°)

(444) Diffraction peak

P.O.R.-part I

1111

Bulk InSb 300K 100K
a (hm) 0.64800 0.64745
(measured) +0.00005 +0.00005
a (nm) 0.64800 0.64744
(theoretical) (known) (calculated)

IT = |T0.(1+ GAT)

a'"Sb = 4.35x10° / K

AT =-200K
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nfa |=( -e_)sinw+e +|n(a) 811:522:(511”12)011
W) ‘11 "33 Y+éz, 0

E =258 O
33 13 11
s 2s'
sin g+ = — 33 = 13 - 037
€337 411 5137°117°12
Slope
1.8688 —
<a>=0.64799 nm RT
1.8684 -
~ H
® 1.868 -  / ___3
D e ] ——--M'LT“= * a,=0.6474 nm
1.8676 =" :
|
£.. +In(a ?
33 (3) 1.8672 |' . v -
0 0.2 0.4 0.6
sin? i
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RESULTS

InSb (10 pm) c c g, Estimation
at 100 K i 1 (MPa) (MPa)
4 devices

Si (625 pm) -5x10% 7x104 77+7 62
1 device

Si (100 pm) -2x104 3x104 29+4 59

CONCLUSIONS 1) Yield Stress of
InSb at 100 K > 044 ﬂ
(>500 MPa)

2) Influence of the underlying substrate (Al,O5)
More thicker than Si (100 um) and a > aS'
and \ or: bad quality of the hybridization

3) not any studied device has cleaved upon cooling

cleavage is related to defective cutting of the initial InSb wafer
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® XRD is a unique tool for contactless determinatibiow temperature-induced strain in the thin
InSb part of ready-to-work InSb-based infrared phadtectors.

® The mechanical simplicity of the studied systens{rf111) on Si (100) in a planar geometry)
allowed simplifications in the formal treatmentdéeag to an easy evaluation of the thermal stress.

® This study has ruled out the influence of the défee between CTE of InSb and silicon in
problems encountered upon cooling of such devices.

P.O.R.-part I 86



Summary:

-We have seen that the diffraction method of analysing stress consists to measure strains along
various directions in the specimen and then use these values to calculate the stresses along any
direction through tensor transformation formulae and the appropriate form of Hooke’s law.

-The method permits the determination of general triaxial stress state.

-The method require a homogeneous strain distribution within the irradiated volume.

-experimentally determined d vs sin? plots indicate that the strain distribution within the irradiated
volume is indeed homogeneous.

Two properties of measured data should be used first to check the dimensionality of the strain
tensor:

- splitting in d vs sin2y plots which is characteristic of shear strains.

-curvature in d vs sin?y plots which indicates strain gradients with depth.

-The method is quite simple and accurate for macroscopically isotropic material (that is locally
Isotropic or anisotropic materials (quasi-isotropic material)). For macroscopically anisotropic
material, i.e. texture material, the mechanical modeling of the material is more complex and
sometimes less confident. The stress analysis is still possible but with less accuracy.
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If the specimen is homogeneous, i.e no stress gradient, no composition gra@

XSA

polycrystalline
Single crystal

Locally elastically Locally elastically X
isotropic anisotropic Compliances or

u u u stiffnesses

Mechanical Random texture Texture
constants
\/ \/
Quasi isotropic non isotropic
specimen specimen
use XEC Use XEF
with PF, ODF

Calculated from
P.O.R.-part Il HN or KE and Gr. Int. Mod. 38




What is the informations in a Bragg peak ?

| 26) "« Position
[ ‘}, | < elIntensity
=] ] | |
) - G\ + Shape-> FWHM
| | L
I it

0 26

Phase analysis (peak positions)

Texture analysis (variation of peak intensity)

Grain size — microdistortions (peak shape)

X-ray Strain or Stress analysis (shift of peak position)
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