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II
Texture analysis

Outlines:-stereographic projection
-crystal orientation
-pole figure
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• Using the inclination of the 
normal to the crystallographic 
plane. Ex: {100} poles of a cubic 
crystal

The Stereographic Projection

• Angles between two planes:
-Circles ABCD (passing through
the center of the sphere)

-Pi normals to the planes

90°

What is a stereographic projection? For illustration, let us consider cubic systems

α
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Stereographic Projection : to represent in a plane view complex phenoma which append in the 3D 
space.

y

z

x

Pole sphere

C0

Pole sphere

Proj.

Plane 
representation
in the C0 plane 
or in a plane // 
to C0

Z

P

p

(inversion center)

- joint P to Z

- Projection p = intersection 
of PZ with C0
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C0

Z

P

p

p’
C’0

plane // to C0

- joint P to Z

-Projection p = intersection of 
PZ with C0

-Or p’= intersection of PZ with C’0
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C0

Z
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J

C’0
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If we consider a given plane (blue circle) and several direction (and pole) in this plane, the 
projection of this plane is represented by a curve in the plane C’0. 
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C0

C’0

D1

D2

P1 P2

p’1 p’2

2) The 2 poles directions D1 and D2 belong to the samemeridian

Meridian of the 
Wulff net.

A B
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The Stereographic Projection

●Projection to a flat 
surface

Stereographic projection superimposed on Wulff net for measurement of angle between poles.
The Wulff net is graduated at 10°intervals for illustrat ive purposes. (angles on the stereo. Proj. ?)
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(001) and (011) Projection of cubic crystals

cosφ =
h1h2 + k1k2 + l1l2

h1
2 + k1

2 + l1
2( ) h2

2 + k2
2 + l2

2( )
The angle between any two direction 
[h1k1l1] and [h2k2l2] can be calculated 
from:
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(111) Projection of cubic crystals
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Orientation O1
Orientation O2

• Solid materials (including thin films), when processed and synthesized develop 
crystallographic domains with a range of orientation and size distributions and 
morphology.

•Crystallographic texture is defined as the preferred alignment of the crystallographic 
orientations in a polycrystalline medium. 

•Textures or preferential orientations can developed during grain growth, heat 
treatment, plastic deformation,…
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• A stereographic projection, with a specified orientation 
relative to the specimen shows the variation of pole 
density with pole orientation for a selected set of crystal 
planes. You just have to keep in mind that the reflected 
intensity is directly proportional to the diffracting 
volume.

• Example: [100] pole figure for cubic material
X1

X2

X3

(c) Fiber texture(a) No texture (« isotropic texture ») (b) textured≡single crystal

X3
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• Measurement of Pole figure:

-at  a fixed 2θ angle (crystal orientation), a complete Phi scan (spins the 
specimen about its normal) can be preformed at a each specific tilt angle (Psi).

-Taking several Phi scans between 0 and 85°can be p lotted in 2D, the 
so-called Pole Figure. The latter represents the orientation distribution of one 
plane of the crystal lattice. For example, a psi step of 5°and a phi step of 5°
can be used. 

•How to perform a pole figure ?

●Choose appropriate receiving slit. The larger are the slit the smaller are the intensity
corrections. But this reduces angular resolution, both for 2theta and for texture. For each
application a compromise must be chosen (which is different for relatively smooth textures 
(e.g. deformed metals) or for very sharp textures (e.g. epitaxial films).

● The ideal specimen should have a flat surface and a roughly circular shape (with a 
diameter larger than 2 cm)

Perform theta-2theta scan over a Bragg peak to determine the true value of 2theta 

Check for different value of chi (e.g. 40°) with a th eta-2theta scan if the value of theta is the 
same (otherwise the sample height is probably incorrect or you have strong residual stress)

Once the appropriate 2theta value chosen, perform the (phi, chi) scans. A pole figure is
scanned by measuring the diffracted intensity at different (phi, chi) settings.
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• How to perform a pole figure ?

• Background Corrections

-The intensities derived from a pole figure must be background corrected. 

-Background measurements can be performed on the same sample that the pole 
figure was made on.

-A powdered sample of the same material can also be used for this purpose.

N.B.:-It is important to verify periodically that the measured intensities have not 
changed significantly on a standard sample. Changes can indicate
misalignement of the goniometer, malfunctionning of electronics or deterioration 
of detector or x-ray tube.

• Defocusing

Due to the decreasing inclination of the specimen surface to the x-ray beam, the beam
covers a larger area at high angles chi. As inclination ( Ψ) of the sample increases, the 
peaks in the diffraction pattern are broadened. Thus the measured intensities can be 
corrected by measuring a defocusing scan on a texture free sample (preferably of the 
same composition). If such a sample does not exist, defocusing corrections can be 
estimated from the stored data.
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• Typical to measure three PFs for the 3 lowest values of Miller indices.

• Why? A single PF does not uniquely determine orientation(s), texture components 
because only the plane normal is measured, but not directions in the plane (2 out of 3 
parameters). Multiple PFs required for calculation of Orientation Distribution

• Random texture or isotropic texture [=uniform dispersion of orientations] means same 
intensity in all directions.

• X-ray beam becomes defocused at large tilt angles (> ~60°); measured intensity from 
random sample decreases towards edge of PF.

• Defocusing correction required to increase the intensity towards the edge of the PF.

• The combination of the θ−2θ setting and 
the tilt of the specimen face out of the 
focusing plane spreads out the beam on 
the specimen surface.

• Above a certain spread, not all the 
diffracted beam enters the detector.

• Therefore, at large tilt angles, the 
intensity decreases for purely 
geometrical reasons.

���� This loss of intensity must be 
compensated for, using the 
defocussing correction. Moreover, 
the absorption correction has to be 
perform in the case of thin films.

Change in shape and orientation of the irradiated spot on the 
sample surface for different sample inclinations as a function
of tilt angle and Bragg angle (Bunge).
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Coordinate systems and Coordinate transformation

The aim of the pole figure is to give some information on the specimen’s microstructure, 
i.e. the arrangement of grain orientation of the polycrystalline thin film. For this, we use 
some special coordinate systems (only right-handed cartesian coordinate systems are 
used); the more used are:

• Crystallite coordinate system C (unity vector Ci): 
the axes are parallel to the symmetry axes of the 
considered crystal, i.e. the corresponding crystal 
lattice. 

• Specimen coordinate system S (unity vector Si): 
the 3-axis is the specimen’s normal (ND), the 1- and 
2- axis correlate with the symmetry directions in the 
surface (as for example the rolling direction (RD) 
and the transverse direction (TD) in the case of 
rolled specimens. 

• Laboratory coordinate system L (unity vector Li): 
the laboratory system is connected with the direction 
of measurement. If the measurement is performed 
in the direction m, the L3 axis is parallel to m. The 2-
axis lies parallel to the specimen’s surface. 
Obviously, the direction of the vector L1 is fixed too 
as the product L2ΛL3.

X1

X2

X3

C1

C3
C2
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S1

S3

S2

L 1

L 3

L 2

Φ

Ψ

RD

TD

ND

α

βφ
ψ

Orientation of the laboratory system relative to the 
specimen system 

Specimen coordinate system on a 
stereographic projection (often used for 
rolled specimens)
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Coordinate transformation

• Using the specimen system and the 
crystallite system :

● we can describe the orientation of a crystallite within a polycrystalline medium by 
specification of the rotation r, which transforms the laboratory frame XL into the 
crystal system XC.  This may be written symbolically as 

X1

X2

X3

• A pole figure is a graphical representation of the angular distribution function of 
a chosen crystal direction g with respect to the Sample Coordinate System S.

• It means that the equatorial plane used in the spherical projection is a plane of the 
Sample Coordinate System

– In the case of a sheet, it is the sheet plane, 
– for a wire - the plane orthogonal to the wire axis. 

LC X.rX =
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●The orientation of a crystallite in a polycrystalline material can be described in respect 
to the specimen system and is given by the transformation matrix P that connects the 
crystal C and the specimen system S. The matrix elements Pij are the cosines between
the vectors Sj and Ci.

● It is often useful to express the orientation between the specimen system and the 
crystal system by the 3 Euler angles (φ1,φ ,φ2) or by the Miller indices {hkl}<uvw>.  {hkl} 
represents the lattice plane that lies parallel to the specimen’s surface and <uvw> the 
lattice direction parallel to the specimen’s 1 axis. (In the litterature, different angle 
notations are used, for a complete review see the book of Bunge).

● The specimen system can be aligned to the crystal system by applying the following
consecutive rotations of Euler angles (see animated next slide).

X1

X2

X3
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To the definition of the Euler angles

e1=S1

e2=S2

e3=S3

e’1

e’2

φ1

Φ

e”2

e”3

e’3=

=e”1

C2=e”’2

φ2

C1=e”’1

C3=e”’3= [010]

[100]

[001]

First rotation φ1

second rotation Φ
third rotation φ2

First rotation f1 around S3 transforms S1 and S2 axis in the new axes X1’ and X2’. The second rotation f around X1’ axis has to align
the S3 axis to the C3 axis and transforms X2’ to X2’’. The third rotation f2 around C3 aligns X1’ to C1 as well as X2’’ to C2.
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●The orientation distribution function (ODF) describes the relative frequency of the different crystal
orientations in the polycrystal, that is the fraction of crystallites of the samples that possess the 
orientation g+dg . 

It will be noted as f(g), g stands for the orientation expressed by the Euler angles: f (φ1,φ
,φ2). It is normalized:

or

● Random distribution means that f(g)=cst=1. The so-called texture index F2 is equal to 1 for the 
isotropic texture case. F2>>1 denotes a strong texture:

● Usually the ODF is graphically plotted as contour lines in the Euler space (φ1,φ ,φ2) for φ1=constant 
or φ2=constant.

● In textured materials some orientations are highly occupied with crystals whereas other orientations 
are less represented. Besides, the ODF, the orientations of the mainly present crystallite groups can
serve to describe the texture state of a material, using the {hkl}<uvw> notation.

● Crystallite group g means the ensemble of all those crystallites have the same orientation g. 
Although spatially separated, for calculations of the average elastic behavior the can be treated as 
one crystal. We will see that for stress analysis method in the next chapter.
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Representation of ODF:

The ODF is graphically plotted as contour lines in 
the Euler space (as for example here for 
φ2=constant). The orientations belonging to 
different combinations of angles may be
physically identical (due to the symmetry of the 
crystal lattice. It is therefore only necessary to 
consider the ODF in a part of the total range of 
angles of the Euler space.

Complete view of ODF in the Euler space:
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Gold thin film (700 nm thick)
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The case of fiber texture: [111]

[1-10]

[11-2]

Top view

Consider a thin film (700 nm thick) with a columnar microstructure in which the (111) planes are 
parallel to the surface, but randomly distributed in the plane of the surface � this is the (111) fiber
texture

S3

S1

S1

S2

If we perform on common theta/2theta 
measurement on this specimen, we will
obtain only diffracted intensities for (hhh) 
planes.
Indeed, in a theta/2theta scan, only the 
planes parallel to the surface can
scatter.

(111)

(200)

(220) (311) (222)

N.B.: As you can see, the relative 
intensities of (111) and (222) peaks do not 
correspond to the one expected, why ?

Cross section
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film, TEM micrograph
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As already written, for thin films the effect of absorption and volume on the effective intensity has to 
be taken into account. This effect as a function of the inclinaison angle and sample thickness is
expressed by the factor:


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Au mass absorption coefficient in cm²/g 208
density in g/cm3 19.3
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Representation of ODF:Complete view of ODF in the Euler space:

The case of fiber texture:
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φ =0

φ =90

φ Epitaxial Relations:

[112] (111) Ni // [110] (110) Mo

[110] (111) Ni // [001] (110) Mo

Mo (002) Ni (220)

Poles figures

Epitaxy :

Mo
[111] Ni

[110] Mo
Ni

Ni

[001] Mo

[110] Ni

TEMHR 
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III
Anisotropic Elasticity

●The objective of this lecture is to provide a mathematical framework for the 
description of properties, especially when they vary with direction.
● A basic property that occurs in almost applications is elasticity.  Although elastic 
response is linear for a lot of practical purposes, it is often anisotropic (composites, 
textured polycrystals etc.).

Objective
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● An example of non-linear mechanical properties is 
plasticity, i.e. the irreversible deformation of solids.

Example of non-linear properties: 

● Stress-strain curves for (1) unfilled, (2) lightly filled and (3) 
highly filled rubber in tensile deformations.

ε(%)

σ(MPa)

● Rocks display unique elastic behavior. They are 
extremely nonlinear, being hysteretic, possessing
discrete memory, and having slow dynamics [a long 
term memory of strain]. Although some of these types 
of nonlinearities may exist in, for example, powdered
metals, it is rocks where these characteristics were
first observed. The class of materials includes rock, 
damaged solids, and, compressed powdered metals. 
Further, nonlinear behavior plays a central role in 
developing new methods with which to characterize
material properties, for instance, interrogating the 
elastic microstructure of rock, determining if a material
is damaged, or monitoring progressive damage. 
Nonlinear attributes of rock have important 
consequences on processes in the earth such as 
earthquake strong ground motion, reservoir
subsidence, seismic wave propagation and 
attenuation, stress fatigue damage, hydraulic
fracturing, etc.
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● Certain properties, such as elasticity, are assumed to be perfectly linear. 
This means that we can write in the case of elasticity that the strain is 
proportional to the stress

σσσσ = C εεεε
where C is the stiffness tensor

For uniaxial tension test or one dimensional case, C ≡ Young’s modulus (or 
elasticity modulus) E.

Linear properties

( )332211ijijij σσσ
E

ν
σ

E

ν1
ε ++δ⋅−⋅













 +
=

● For isotropic materials, the Hooke’s law can be used:

where ν is the Poisson’s ratio
and δij : kronecker’s symbol

( )332211ijijij 2 ε+ε+εδ⋅λ+ε⋅µ=σ where λ,µ are the Lamé moduli
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Elasticity

● Elasticity: this property requires tensors to describe it fully.

● Even in cubic metals, a crystal is quite anisotropic. We will speak of local 
anisotropy. For example,  the [111] direction in many cubic metals is stiffer than the 
[100] direction.

● In cubic materials, 3 numbers or coefficients or moduli are required to fully 
describe elastic properties.

● isotropic materials only require 2, as for example ν and E or λ and µ (see Hooke’s 
law on the preceding slide). They are also bulk modulus B, shear modulus G=µ. 

BUT:
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Elasticity anisotropy

● First we restate the linear elastic relations for the properties Compliance, written S 
or (sij), and Stiffness, written C or (cij) , which connect stress, σσσσ, and strain, εεεε. We 
write it first in vector-tensor notation with “ :” signifying inner product (i.e. add up 
terms that have a common suffix or index in them): 

σσσσ = C:εεεε
εεεε = S:σσσσ

In component form (with suffices),
σij = Cijklεkl
εij = Sijklσkl

● The definitions of the stress and strain tensors mean that they are both symmetric 
(second rank) tensors.  Therefore we can see that

ε23 = S2311σ11
ε32 = S3211σ11 = ε23

which means that,
S2311 = S3211

and in general,
Sijkl = Sjikl

We will see later on that this reduces considerably the number of different 
coefficients needed.
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Stiffness in sample coordinate

● Consider how to express the elastic properties of a single crystal in the sample 
coordinates.  In this case we need to rotate the (4th rank) tensor from crystal 
coordinates to sample coordinates using the orientation (matrix):

cijkl' = aim ajn ako alpcmnop

● Note how the transformation matrix appears four times because we are 
transforming a 4th rank tensor.

● Young's modulus as a function of direction can be obtained from the 
compliance tensor as E=1/s'1111.  Using compliances and a stress boundary 
condition (only σ11≠0) is most straightforward. To obtain s'1111, we simply apply 
the same transformation rule,

s'ijkl = aim ajn ako alpsmnop

Young’s modulus from compliance
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Matrix notation
● It is useful to re-express the three quantities involved in a simpler format.  The stress and strain tensors 
are vectorized,  i.e. converted into a 1x6 notation and the elastic tensors are reduced to 6x6 matrices. 
For stress tensor:

( )654321
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For strain tensor:

The particular definition of shear strain used in the reduced notation happens to correspond 
to that used in mechanical engineering such that ε4 is the change in angle between direction 
2 and direction 3 due to deformation.
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Work conjugacy
● The more important consideration is that the reason for the factors of two is so that work 
conjugacy is maintained.

dW = σ:dε = σij : dεij = σk • dεk

Also we can combine the expressions σσσσ = C:εεεε and εεεε = S:σσσσ to give:

σσσσ = C:S:σσσσ, which shows: I = C:S, or, C = S-1

● Lastly we need a way to convert the tensor coefficients of stiffness and compliance to the 
matrix coefficients.  For stiffness, it is very simple because one substitutes values according 
to the following table, such that matrixC11 = tensorC1111 for example.

Tensor 11 22 33 23 32 13 31 12 21
Matrix 1 2 3 4 4 5 5 6 6

Conversions of stiffness tensor:
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Stiffness matrix


















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





==

666564636261

565554535251

464544434241

363534333231

262524232221

161514131211

cccccc

cccccc

cccccc

cccccc

cccccc

cccccc

)cij(C
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Conversions of compliance’s tensor

● For compliance some factors of two are required and so the rule becomes:

versaviceor

)3nand3m(for4p

)3nand3m(for2p

)3nand3m(for1p

S.pS ijklmn

>>=
>≤=
≤≤=

=
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Relationships between elastic coefficients 

● Some additional useful relations between coefficients for cubic materials are as 
follows.  Symmetrical relationships exist for compliances in terms of stiffnesses.

C11 = (S11+S12)/{(S11-S12)(S11+2S12)}

C12 = -S12/{(S11-S12)(S11+2S12)}

C44 = 1/S44.

● The relationships for S in terms of C are symmetrical to those for stiffnesses in 
terms of compliances (a simple exercise in algebra!).

S11 = (C11+C12)/{(C11-C12)(C11+2C12)}

S12 = -C12/{(C11-C12)(C11+2C12)}

S44 = 1/C44.
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Effect of symmetry on stiffness matrix

● Why do we need to look at the effect of symmetry?  For a cubic material, only 3 
independent coefficients are needed as opposed to the 81 coefficients in a 4th rank 
tensor.  The reason for this is the symmetry of the material.

● What does symmetry mean?  Fundamentally, if you pick up a crystal, rotate 
[mirror] it and put it back down, then a symmetry operation [rotation, mirror] is such 
that you cannot tell that anything happened.
● From a mathematical point of view, this means that the property (its coefficients) 
does not change.  For example, if the symmetry operator changes the sign of a 
coefficient, then it must be equal to zero.
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Example of the effect of symmetry on the stiffness matr ix :

Let’s apply a 90°rotation about the crystal-z axis (axis 3),
C’ ijkl = aimajnakoalpCmnop

And, because of the symmetry:
C’ = C
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
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664656361626

464454341424

565455351525

363435331323

161415131121

262425232122

CCCCCC

CCCCCC

CCCCCC

CCCCCC

CCCCCC

CCCCCC

C

C is the tensor in the reference frame associated to the cubic lattice
C’ is the tensor in the reference frame obtained with a 90°rotation
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Using C’ =C (because of the symmetry) , we can equate coefficients and find that:

C11=C22, C13=C23, C44=C35, C16=-C26,

and moreover

C14=C25 = -C14 = 0
Thus we have also:

C14=C15 = C24 = C25 = C34 = C35 = C36 = C45 = C46 = C56 = 0.

′ C =

C11 C12 C13 0 0 C16

C12 C11 C13 0 0 −C16

C13 C13 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 C46

C16 −C16 0 0 C46 C66

 

 

 
 
 
 
 

 

 

 
 
 
 
 

Finally:
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Thus by repeated applications of the symmetry operators, one can demonstrate (for 
cubic crystal symmetry) that one can reduce the 81 coefficients down to only 3 
independent quantities. 





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
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
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44

44

44

111212

121112

121211

c00000

0c0000

00c000

000ccc

000ccc

000ccc

C

�These become two in the case of isotropy (because c44=1/2(c11-c12)).

In the reference frame 
associated to the 
crystallite system C

Thus, the elasticity of a cubic material is completely characterized by 
three elastic coefficients such as the 3 stiffnesses (or 3 compliances).
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Cubic crystals : anisotropy factor or Zener’s factor

● If one applies the symmetry elements of the cubic system, it turns out that only 
three independent coefficients remain: C11, C12 and C44, (similar set for 
compliance). From these three, a useful combination of the first two is 

C' = (C11 - C12)/2

● C' = (C11 - C12)/2 turns out to be the stiffness associated with a shear in a <110> 
direction on a  plane.  In certain martensitic transformations, this modulus can 
approach zero which corresponds to a structural instability.

● Zener proposed a measure of elastic anisotropy based on the ratio A=C44/C'.
This turns out to be a useful criterion for identifying materials that are elastically 
anisotropic.  
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Rotation of compliance’s matrix

● Given an orientation aij, we transform the compliance tensor, using cubic point group 
symmetry, and find that:
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● This can be further simplified with the aid of the standard relations between the 
direction cosines, aikajk = 1 for i=j; aikajk = 0 for i≠j, (aikajk = δij) to read as follows.

● These relation is also written as a function of Γ (orientation parameter)
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For an uniaxial tensile test:

1111 .'s σ=ε

By definition, the Young’s modulus in any direction is given by the reciprocal of 
the compliance, E = 1/S’11
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Anisotropy for cubic materials

● Thus the second term on the expression of s’11 is zero for <100> directions and, for s0>0, 
maximum in <111> directions (conversely a minimum for s0<0).  

The following table shows that most cubic metals have positive values of Zener's coefficient so 
that <100> is soft and <111> is hard, with some exceptions like Nb, Mo and NaCl.

material
E<100> 
(GPa)

E<111> 
(GPa)

E<111>/
E<100>

A

bcc Nb 152 82 0,54 0,51
bcc Nb 145 83 0,57 0,55

NaCl 44 33 0,75 0,70
bcc Mo 384 287 0,75 0,71
bcc W 407 411 1,01 1,01

Fe3O4 214 243 1,14 1,16
fcc Al 63 76 1,20 1,22

MgO 251 355 1,42 1,55
bcc Ta 146 217 1,49 1,56
diamond Si 130 188 1,44 1,56
fcc Ni 129 305 2,36 2,67
bcc Fe 119 283 2,38 2,70
fcc Au 43 117 2,71 2,85
fcc Ag 43 121 2,78 3,04
fcc Cu 66 192 2,92 3,28

Locally perfectly isotropic

A<1

A>1
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Young’s modulus can be represented by means of a spherical polar diagram, that is, with a surface 
generated by a vector whose length is proportional to the value of Young’s modulus in the direction 
pointed by the vector itself.
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What about the macroscopic elasticity ?

-if you have a random distribution of orientations of grains or crystallites, you have to 
average over all orientations.
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But in this particular case, transversal isotropy

-if you have a non random of orientations of grains or crystallites. Let us consider the 
simple case of {100} fiber texture (i.e. (100) planes // surface and random distribution of 
crystallites in the plane), you have to average over all orientations in the plane:
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But in this particular case, transversal isotropy

-if you have a non random of orientations of grains or crystallites. Let us consider the 
simple case of {111} fiber texture (i.e. (111) planes // surface and random distribution of 
crystallites in the plane), you have to average over all orientations in the plane:
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We have covered the following topics:

-Linear properties

-Examples of properties
-Tensors, vectors, scalars.

-Elasticity, as example as of higher order property, also as example as how to 
apply (crystal) symmetry.

Summary

The basic relations we have described are necessary for the stress analysis using 
X- and neutron rays, for the interpretation of the measured data and for the 
calculation of averaged elastic properties and X-ray elastic constants (XEC) or 
diffraction elastic constants (DEC). 

The basic relations we have described are necessary for the stress analysis using 
X- and neutron rays, for the interpretation of the measured data and for the 
calculation of averaged elastic properties and X-ray elastic constants (XEC) or 
diffraction elastic constants (DEC). 
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● Stimuli and responses of interest are, in general, not scalar quantities but tensors.  
Elasticity is considered as linear property but some of the properties of interest, 
such as the plastic properties of a material, are far from linear at the scale of a 
polycrystal.  Nonetheless, they can be treated as linear at a suitably local scale and 
then an averaging technique can be used to obtain the response of the polycrystal.  
The local or microscopic response is generally well understood but the validity of the 
averaging techniques is still controversial in many cases. 

● There are many problems in which a non-homogeneous response to a 
homogeneous stimulus is of critical importance. Stress-corrosion cracking, for 
example, is a wildly non-linear, non-homogeneous response to an approximately 
uniform stimulus which depends on the mechanical and electro-chemical properties 
of the material.

� A polycrystal is composed of grains which are elastically anisotropic, and is
therefore strongly heterogeneous from the mechanical point of view. It can therefore 
be considered as a composite. What are the effective properties of the  polycrystal
or the composite ?

Homogeneisation
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● The question of the effective properties of a composite implicitely assumes that the problem
contains 2 scales which are well separated:

– The microscopic scale is small enough for the heterogeneities to be smeared out. 
– The effective properties at the macroscopic scale of the composite are determined

from geometrical and material data available from the study of a representative
volume element. The geometrical and/or material properties of random composites 
are only partially known through statistical informations, e.g. correlation functions of 
various orders.

● In order to describe the properties of a material, it is useful to define a representative 
volume element (RVE) that is large enough to be statistically representative of that 
region (but small enough that one can subdivide a body).

● For example, consider a polycrystal: how many grains must be included in order for 
the element to be representative of that point in the material?

Whole specimen

RVE
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●A polycrystal is composed of grains which are elastically anisotropic, and is therefore 
strongly heterogeneous from the mechanical point of view:

In a polycrytalline material, the strains differ between grains and all grains interact with each
other due to the incompatibility of these different strains. As a consequence, the average
stresses in each grain also differ. 
To determine the average stress in each grain, several assumption can be used
- from the most complicated ones (but realistic ones) : the self-consistent methods

-to the simplest ones (as Voigt � homogeneous strain or Reuss� homogeneous stress).

� A grain interaction model has to be used….

Homogeneisation

Crystallite = single crystal � well
known properties

What about polycrystal properties ?
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IV
X-ray strain measurements– Stress 

analysis:

For x-ray stress analysis or neutron stress analysis, the 
diffraction data are information at the microscopic level. 
Moreover, the diffraction information is only coming from a 
small part of the polycrystalline specimen. We have 
information on the diffracting volume alone.

How to obtain macroscopic stress σI (macroscopic residual
stress or applied stress) from microscopic strain
measurements (diffraction data) is the main question in 
XSA ?

The principle is quite easy to understand:
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X1

X2

X3

φ

ψ

The strain in the direction of the vector n (azimuth φ and polar angle ψ):

●Fundamental equation of x-ray strain determination:

ψϕε+ψϕε+ψϕε+

ψε+ψϕε+ψϕε=εϕψ
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The strain in the direction n can be related to 
the lattice spacing:
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ϕψr

Conventional and Rational definition of strain

where d0 is the strain free lattice spacing or stress 
free lattice spacing.
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If we can measure d0 and dφψ, the fundamental equation of x-ray strain determination has 6 
unknowns: ε11, ε22, ε33, ε12, ε13, ε23.
Thus, theoritically it can be solved if dφψ is measured along six independents directions. In 
practice, more points are measured to improve accuracy.
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In polycrystalline material, where it is possible to obtain a diffracted intensity for a lot of psi 
angles, different d or dφψ, vs sin²y behavior are observed.

Different types of dφψ versus sin²y plots.

sin2ψ sin2ψ

d

sin2ψ

d

ψ>0

ψ<0

isotropic texture and no shear stress
� Straight lines

isotropic texture and shear stress
� Ψ splitting

Texture material
� Oscillatory behavior
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●Stress analysis:

In the case of thin films (thickness < a few µm) deposited on a substrate by PVD or CVD, a few 
hypothesis may be used (and are often encountered in practice):

σ33=0 / no shear stresses / equi biaxial stress state

Let us consider an locally isotropic material � ( )332211ijijij σσσ
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Experimentally, the measurement of reflected intensity is performed for a few different tilt angles 
(different ψ angles), and the following equation can be plotted:
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But, there are two unknowns in the above equation: the stress σ11 AND the position of Bragg 
peak for the stress free specimen θ0, i.e. the stress or strain free lattice parameter a0.

�Several possibilities are encountered to solve this problem: 
-the simplest one is to estimate first the slope, and to obtain the stress
-then from the origin ordinate, you calculate the strain(or stress) free lattice parameter

stress11σE

ν1
slope

+
=

If the elastic constants of the material are known:
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If we removed one of the three preceding hypotheses we have done on the stress state, the 
experimental procedure is the same but the measurements have to be performed in other
directions (i.e. several phi angles).

Example: the stress are no more equi biaxial, the measurements are performed for two phi angles

sin2ψ
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slope
intercept

sin2ψ

ln
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/s
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θ)

slope

intercept

φ=0° φ=90°

If σ11 ≠ σ22, the slope for f=0°will be different from the slope fo r f=90°

If now there are also shear stresses, the measurements have to be performed for negative
and positive psi angles and also several phi angles.
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●Stress analysis:

Let us consider a locally non isotropic material �
(but macroscopically isotropic)
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The fund.eq. was written as:

By analogy, X-ray elastic constants have been introduced:
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(for relations of XEC see for example : Hauk book)
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with

Voigt:

Reuss:
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Indeed as we have already seen, the Young’s modulus is direction dependent. Thus, the x-ray strain
measurements will differ from a plane family to another:
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For the same stress state, the slope will be larger for a softer family. For example, consider a 
polycrystalline material which is elastically anisotropic (A=3), the slope of {h00} family will be larger
than the slope of {hhh} family. 

Measurements on {h00} Measurements on {hhh}
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●The determination of X-ray elastic constants (XEC):

Several models of grain interaction may be used. The two simplest are:

-Voigt �isodeformation
-Reuss � iso-stress

The most realistic models are:

-Hill-Neerfeld � average of the 2 above models (experimentally this
model is quite good but it has no physical justification)

-Kröner-Eshelby models� the more realistic (but mathematically a little bit more 
complex)…

Substrate

εεεε<0εεεε>0

ψψψψ
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Phase identification and particularly stress analysis rely on peak positions. Thus, we have to 
know something about the instrumental errors !! 
The instrumental errors may be classified into 2 groups: 

� errors dependent on beam optics,
� errors dependent on alignment.

All these errors can be checked with standard specimens, i.e. specimens for which you
perfectly know the lattice parameter, the texture, the residual stress state.

For details of influence of each parameters, you should refered to the books cited in the first 
slide.

If we consider that we have no problem with optics, let us interest to errors which originate
from instrumental misalignment: sample displacement from the center of the goniometer, 
effect of psi axis not corresponding to the 2theta axis. 

●Experimental errors:

The first thing to do is to put the specimen on the center of the goniometer !
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2θ
h
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∆∆∆∆2θθθθ true peak position

false peak position

Instrumental errors

The error due to the sample displacement depend on 2theta angles: 
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for R=20 cm and h=50µm
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Moreover, if the specimen is displaced from the center of the goniometer, the error in 2theta 
angles will depend on the psi angles.

ψ axis

Simple case (only error displacement of 
the specimen)

ψ axis

general case-error displacement of the 
specimen and x-ray beam not on the psi axis

Displacement in the psi geometry:

The peak shift between ψ=0 and ψ is given by:









ψ+







 −
ψ

θ=θ∆ tan.x1
cos

1
.h.cos.

R

2
2

h
x

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0 20 40 60 80
ψ

∆2
θ

2theta=120°
2theta=60°



P.O.R.-part II 68

0,692
0,693
0,694

0,695
0,696

0,697
0,698
0,699

0 0,5 1

sin² ψψψψ

ln
(1

/s
in

(
θθ θθ)

2theta=60°

0,1436

0,1438

0,144

0,1442

0,1444

0,1446

0,1448

0,145

0 0,2 0,4 0,6 0,8 1

sin² ψψψψ

ln
(1

/s
in

(
θθ θθ

)

2theta=120°

If you perform x-ray stress analysis (XSA):

For 2theta=60° slope=17.5x10 -4 For 2theta=120° slope=3.37x10 -4

This means that for an position error of 50 µm (x and h), we will obtain stress in the sample. 
And the stress values are 5 times higher at 2theta=60°than 120°!!

� You have to pay carefull attention to the installation of the specimen on the goniometer…
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How to perform experimentaly stress analysis ?

-choose a Bragg peak, and perform
theta/2theta scans for a set of psi 
angles
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cr-aubert-124-W-211-4h-00,NJC sans correction avec correction

2θ Center of Gravity FWHM Inetto int Inetto integral SIN(Ψ²) LN(1/SINθ) avec correction pente pente
73,5534 73,5535 1,7871 15,07 35,33 0,88302222 0,51299811 0,514019322 -0,014317445 -0,015117299
72,7901 72,7906 1,7096 9,43 20,42 0,28081443 0,52197194 0,52335973 ordonnées origine ordonnées origine
72,6599 72,6606 1,8469 8,82 21,39 0,22040355 0,52351517 0,5245805 0,526393269 0,527721417
72,7355 72,7363 1,572 9,86 21,6 0,28081443 0,52261865 0,523574504 coeff. Déterm. coeff. Déterm.
72,8686 72,8679 1,6398 9,28 22,63 0,3454915 0,52104327 0,5220631 0,991350926 0,996777678
72,9105 72,9116 1,7464 6,45 15,94 0,41317591 0,52054813 0,521539969
73,2034 73,2022 1,3791 5,55 10,92 0,67101007 0,51709743 0,517889843 sigma (Gpa) sigma (Gpa)
73,3743 73,3741 1,7634 9,37 22,67 0,8213938 0,51509252 0,515583494 -4,6 -4,9
73,4746 73,4734 1,8174 14,02 34,52 0,88302222 0,51391877 0,51442639 a0 (Angstrom) a0 (Angstrom)
73,5482 73,5487 1,8099 15,83 36,18 0,9330127 0,51305882 0,513522535 3,17413 3,17724
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How to perform experimentaly stress analysis ?

W/WC multilayer
Total thickness 200 nm
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W-(211) peak (λ = 0.238 nm)

200 nm tungsten film on 
polyimide:

≈ 2° shift of the peak position
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P→→→→ σσσσ = -2.3 GPa       m→→→→ a0>abulk

Example of XSA:
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0,109

0,11

0,111

0,112

0,113

0,114

0,115

0,116

0,117

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9

sin²ψ

ln
(1

/s
in

)

 φ =0°

 φ =90°

Polycrystalline non textured and 340 nm thick

Stainless steel thin film deposited by PVD onto kapton substrate

Example of XSA:

Top view

11

22
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Polycrystalline isotropic (D ~ 10 nm)Example of XSA:
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244441211f
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2
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441211
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441211f
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22

33
ΦΨ

(Crystallite-group method)

• isotropic or quasiisotropic thin film (tungsten):

• (111) textured anisotropic thin film (Gold) :

X-ray strain analysis
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sin² ψψψψ

ln
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T2
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T7

Applied load

Average slope

Gold thin film deposited on kapton substrate
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sin² ψψψψ

εεεε

CGM (sij simulated)

Experiments

���� Several Bragg’s families AND ���� no more linear

T1

T6

{222}

{422}

{420}

{331}

{331}

{222}

{420}

{422}

Gold thin film deposited on kapton substrate
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Another example: X-ray diffraction measurement of thermal strain in InSb-
based devices

Silicon Signal Processor 
Readout chip

InSb
∼10µm

Hybridization
Indium Bumps + Stick

hνννν

Detector Array

Working Temperature : Liquid Nitrogen
Problems upon cooling
Example: Cleavage of the thin brittle InSb layer

Hybrid Focal Plane Arrays (FPA) Technology
Backside-illuminated InSb IR Detector Arrays

High Fill Factor / High Sensitivity
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For Silicon:
S3// [001]
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Some mechanics:



























−

−

6646

441515

4644

331313

15131112

15131211

's0's000

0's00's's

's0's000

000's's's

0's0's's's

0's0's's's

















σ
σ

=σ
000

00

00

11

11



P.O.R.-part II 79

klijklij .s σ=ε

Some mechanics
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33
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For the specific orientation of the two single crystals, the mismatch of CTE 
induces a quite simple equibiaxial strain tensor (i.e. which is isotropic in the 
plane).
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InSb (111) on Si (100) : A simple mechanical problem

Isotropic strain is in the plane of the InSb layerε11=ε22

Equi-biaxial thermal stress tensor σ11=σ22

No shear stress σij=0 for i≠j
Free surface σ33=0
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2sin).

3311
( εψεεψε +−=
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XRD measurement along [hkl] :

lattice spacing (parameter) d
ψ

(a
ψ
)

Stress free lattice spacing (parameter) d0 (a0)

Single crystalline (111) InSb

[1 1 1]

[h k l] ψψψψ

[1 –1 0]

[1 1 -2]
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33

2sin).
3311
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.
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Single crystalline (111) InSb

(111) (224)

(117)
ψψψψ

(008)

InSb (333) (444) (224) (551) (117) (008)

2θθθθ 76.29 110.89 71.23 116.19 116.19 143.97

ψψψψ 0 0 19.47 -27.21 43.31 54.74

sin2222ψψψψ 0 0 0.11 0.21 0.47 0.67

λCuKα1 = 0.15406 nm

Probing depth in InSb

1.5 µm to 3 µm

Mass absorption coefficient (cm²/g) density (g/cm3)
Indium (In) 243 7.31
Antimony (Sb) 270 6.697
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Experimental Set-up

Home-made Cryostat XRD 3000 - SEIFERT

Sample

Cold 
Finger

Be window

Samples : InSb arrays hybridized on Si (625 µm or 100 µm) on AlN (α # αSi)

or Al 2O3 (α > αSi)



P.O.R.-part II 83

)T1.(ll 0TT ∆α+=

Bulk stress free InSb Lattice Parameter

0.64744
(calculated)

0.64800
(known)

a (nm)
(theoretical)

0.64745
±0.00005

0.64800
±0.00005

a (nm)

(measured)

100K300KBulk InSb

αInSb = 4.35x10-6 / K

∆T = - 200 K(444) Diffraction peak
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InSb (10 µm)
at 100 K

εεεε33 εεεε11
σσσσ11111111

(MPa)
Estimation

(MPa)

4 devices
Si (625 µm) -5x10-4 7x10-4 77±7 62

1 device
Si (100 µm) -2x10-4 3x10-4 29±4 59

RESULTSRESULTS

CONCLUSIONSCONCLUSIONS Yield Stress of 
InSb at 100 K 
(>500 MPa) 

> σ11

1)

2) Influence of the underlying substrate (Al2O3)
More thicker than Si (100 µm) and α > αSi

and \ or: bad quality of the hybridization

3) not any studied device has cleaved upon cooling

cleavage is related to defective cutting of the initial InSb wafer
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� XRD is a unique tool for contactless determination of low temperature-induced strain in the thin 
InSb part of ready-to-work InSb-based infrared photo-detectors. 

� The mechanical simplicity of the studied system (InSb (111) on Si (100) in a planar geometry) 
allowed simplifications in the formal treatment leading to an easy evaluation of the thermal stress.

� This study has ruled out the influence of the difference between CTE of InSb and silicon in 
problems encountered upon cooling of such devices. 
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Summary:

-We have seen that the diffraction method of analysing stress consists to measure strains along
various directions in the specimen and then use these values to calculate the stresses along any
direction through tensor transformation formulae and the appropriate form of Hooke’s law.
-The method permits the determination of general triaxial stress state.
-The method require a homogeneous strain distribution within the irradiated volume.

-experimentally determined d vs sin²ψ plots indicate that the strain distribution within the irradiated
volume is indeed homogeneous. 

Two properties of measured data should be used first to check the dimensionality of the strain
tensor:

-ψ splitting in d vs sin²ψ plots which is characteristic of shear strains.
-curvature in d vs sin²ψ plots which indicates strain gradients with depth.

-The method is quite simple and accurate for macroscopically isotropic material (that is locally
isotropic or anisotropic materials (quasi-isotropic material)). For macroscopically anisotropic
material, i.e. texture material, the mechanical modeling of the material is more complex and 
sometimes less confident. The stress analysis is still possible but with less accuracy. 
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XSA

polycrystalline
Single crystal

Locally elastically
isotropic

Locally elastically
anisotropic

Mechanical
constants

Random texture

Quasi isotropic
specimen

use XEC
Calculated from

HN or KE 

Texture

non isotropic
specimen

Use XEF
with PF, ODF

and Gr. Int. Mod. 

If the specimen is homogeneous, i.e no stress gradient, no composition gradient,…

Compliances or 
stiffnesses
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What is the informations in a Bragg peak ? 

• Position

• Intensity

• Shape ���� FWHM

• Phase analysis (peak positions)
• Texture analysis (variation of peak intensity)
• Grain size – microdistortions (peak shape)
• X-ray Strain or Stress analysis (shift of peak position)


