SEMAT / UM

Caracterização de Materiais por Difracção de Electrões Retrodifundidos (EBSD)

Centro de Materiais da Universidade do Porto (CEMUP)

Rui Rocha

rrocha@reit.up.pt

1. Fundamentos da técnica EBSD

(SEM: Radiações de interesse para EBSD; Padrões de Kikuchi: Formação e Indexação; Sistemas de referência)

2. Procedimentos experimentais

(Condições experimentais; Calibração; Preparação de amostras; Efeito de carga)

3. Limitações

(Resolução espacial; Topografia da amostra; Composição química)

4. Metodologias de análise

(Análise Pontual; Análise OIM; Grãos em EBSD)

5. Análise OIM: Representação e análise de dados

- Em actividade desde 1981
- Integrado na Rede Nacional de Microscopia Electrónica (RNME)
- Prestação de serviços à comunidade científica na área da caracterização morfológica, microanalítica e microestrutural de materiais
- Instalação em 2007 de um novo <u>SEM</u>, que integra um sistema de <u>microanálise por raios-X do</u> <u>tipo EDS</u> e um sistema de análise de <u>padrões de</u> <u>difracção de electrões retrodifundidos (EBSD)</u>

SEM: FEI Quanta 400FEG EDS: Genesis X4M EBSD: Edax TSL

O que é o EBSD (<u>Electron BackScattered Diffraction</u>)?

• Técnica de caracterização de superfícies (até 100nm de profundidade) através da difracção de electrões e que permite:

- Identificação de fases cristalinas
- Identificação da orientação cristalina
- Caracterização da microestrutura
- É implementada num Microscópio Electrónico de Varrimento (SEM)
- Tipos de materiais analisados
 - Materiais cristalinos compatíveis com observação por SEM

(Metais, Cerâmicos, Geológicos, ...)

- Condutores ou não-condutores

- Filmes finos, materiais em *Bulk (desde que convenientemente preparados)*

Técnicas de difracção para caracterização de materiais

- Têm em comum a análise da interacção elástica entre radiação incidente e a estrutura cristalina da materia
- Tipos de radiação utilizadas para estudos de difracção em materiais:

Radiação		Carga Eléctrica	Gama de Energias	Comprimentos de onda
Raios-X		Não	1 a 25 keV	10 a 0.5 Å
Electrões	EBSD	Sim	0.1 a 30 keV	1.3 a 0.07 Å
	TEM	Sim	100 a 500 keV	0.04 a 0.01 Å
Neutrões	Frios	Não	0.1 a 10 meV	30 a 3 Å
	Térmicos		10 a 100 meV	3 a 1 Å
	Quentes		100 a 1000 meV	1 a 0.3 Å
Radiação de sincrotrão		Não	0.1 eV a 1.0 MeV	0.1mm a 0.01 Å

Sistema de referência

- RD Reference direction
- TD Transverse direction
- ND Normal direction

Ângulos de Euler (formalismo de Bunge: ϕ_1 , Φ , ϕ_2)

- Utiliza um feixe de electrões como radiação incidente
- Da interacção entre os electrões do feixe incidente com o material resultam radiações que permitem a caracterização da amostra:
 - Imagiologia (topografia, distribuição elementar)
 - Espectroscopia (composição química)
 - Difracção electrónica (estrutura cristalina)

Volumes de emissão

Electrões Secundários (ES) - Informação topográfica $\eta_{ES}(\theta) = \eta_{ES_0} \cdot \sec(\theta)^n$, $(\eta_{ES} = I_{ES}/I_0)$ - Profundidade de emissão ~ alguns nm

Raios-X (Rx)

- -Composição elementar (B/Be ao Urânio)
- -Resolução espacial (Z, E0) ~ 0.5 alguns µm's

1. Fundamentos: SEM – Electrões Retrodifundidos

- Coeficiente de rectrodifusão depende do número atómico médio do material
 - Imagens de electrões retrodifundidos
- Direcção de rectrodifusão corresponde à direcção especular relativamente à orientação feixe-amostra
- Interacção com a rede cristalina introduz perturbações nas direcções de emergência → EBSD

Incidência segundo um ângulo α

- EBSD é uma técnica complementar do SEM
- Fonte de radiação primária: <u>feixe de electrões</u> <u>do SEM</u>
- Da interacção elástica electrões-amostra resultam padrões nos ângulos de emergência dos ER
- Análise dos padrões adquiridos permite caracterizar as simetrias associadas à estrutura cristalina
- Análise pontual permite caracterizar
 - Estrutura cristalina
 - Orientação local do cristal
- Análise extensiva (OIM)
 - Permite obter informações estruturais
 - (grãos, fronteiras de grão, texturas)

Comprimento de onda de de Broglie associado aos electrões

$$h_e = \frac{h}{\sqrt{2m_0 eV\left(1 + \frac{eV}{2m_0 c^2}\right)}}$$

• Lei de Bragg para a difracção

Simulação crystalOgraph

1. Fundamentos: Formação dos padrões de Kikuchi

Padrão de Kikuchi obtido numa amostra de aço (Fe,Ni,Cr)

• Padrões: elementos de simetria e orientação

Bandas	Planos cristalográficos	
Ângulos entre bandas	Orientação relativa entre planos cristalográficos (ângulos entre planos cristalográficos)	
Largura das bandas	Distâncias interplanares	
Pólos	Intercepção das bandas - Orientação	
Contraste do padrão	Factor de estrutura dos planos	
Posição absoluta do padrão	Orientação absoluta no sistema EBSD	

1º passo – identificação das bandas e sua posição no padrão Transformada de Hough (Transformada de Radon)

1º passo – identificação das bandas e sua posição no padrão Transformada de Hough (Transformada de Radon)

1º passo – identificação das bandas e sua posição no padrão Transformada de Hough (Transformada de Radon)

2º passo – pesquisa de fases candidatas na base de dados

Método dos Tripletos

 Tripletos – ângulos internos de triângulos formados por conjuntos de três bandas

and the second second second	Angle	(hkl) ₁ 200	(hkl) ₂ 311
AND A COMPANY OF STREET, AND	29.5	111	311
The sector of the Party of the sector of the	31.5	220	311
	35.1	311	311
A CONTRACTOR AND A CONTRACT OF A	35.3	111	220
	45.0	200	220
	50.5	311	311
A CONTRACTOR OF A CONTRACT A CONTRACTOR	54.7	111	200
77	58.5	111	311
17	60.0	220	202
N	63.0	311	131
8	64.8	220	311
THE TOP STOLEN AND AND AND AND AND AND AND AND AND AN	70.5	111	111
21	72.5	200	131
and the second se	80.0	111	311
and the second second second second second	84.8	311	131
and the second se	90.0	111	220
	90.0	200	020
	90.0	200	022
and the second sec	90.0	220	113
	90.0	220	220

2º passo – pesquisa de fases candidatas na base de dados

Método dos Tripletos

В

N

- Tripletos ângulos internos de triângulos formados por conjuntos de três bandas
- Verificação da existência de cada tripleto para todas as fases pré-seleccionadas

Tripleto	Fase 1	Fase 2	Fase 3
R, -, Y	x		
R, , B	x		
R, , M	x	2	2
R, Y, B	x		Ĩ.
R, Y, M	x	x	
R, B, M	x		
■, ¹ , B	x		
6.Y.M	x		
8, B, M	x		
, В , М	x		x
Total	10	1	1

Angle

(hkl)

000

(hkl).

Alguns parâmetros de controlo de qualidade

• IQ (Image Quality)

Indicador da qualidade dos padrões de Kikuchi baseado no seu contraste.

<u>Não é um indicador absoluto</u>, pois depende do material e das condições de aquisição e processamento dos padrões.

Corresponde à soma das intensidades dos picos na transformada de Hough, medidos em relação ao fundo

Mapa dos valores IQ numa superfície metálica

$$IQ = 100$$

IQ = 217

Alguns parâmetros de controlo de qualidade

• CI (Confidence Index)

Indicador da unicidade da solução

Varia entre 0 e 1

0 – quando se obtém uma segunda fase/orientação com o mesmo número de votos que a fase(orientação escolhidas

1 – situação ideal onde as outras fases/orientações consideradas não obtiveram qualquer voto.

$$CI = \frac{V_1 - V_2}{V_{ideal}}$$

Alguns parâmetros de controlo de qualidade

• Fit

Indicador da fiabilidade do ajuste

Corresponde à média dos desvios angulares das bandas detectadas relativamente aos valores esperados (BD)

Para padrões de óptima qualidade e soluções correctas, é um indicador da precisão angular do sistema EBSD

Resumo

1. Fundamentos da técnica EBSD

(SEM: Radiações de interesse para EBSD; Padrões de Kikuchi: Formação e Indexação; Sistemas de referência)

2. Procedimentos experimentais

(Condições experimentais; Calibração; Preparação de amostras; Efeito de carga)

3. Limitações

(Resolução espacial; Topografia da amostra; Composição química)

4. Metodologias de análise

(Análise Pontual; Análise OIM)

5. Análise OIM: Representação e análise de dados

Inclinação da amostra (θ)	70 °
Elevação da câmara EBSD (δ)	10°
Distância de trabalho (WD)	10mm
Distância amostra-detector EBSD (Z)	aprx. 30mm

Microscópio Electrónico de Varrimento (SEM)

• Tensão de aceleração

Maior tensão de aceleração

→ Maior volume de interacção

→ Maior a potência incidente sobre a superfície

 \rightarrow Menor sensibilidade ao estado cristalino da superfície

→ Maior número de electrões retrodifundidos

Valores típicos: 10kV a 25kV

Corrente do feixe

Maior corrente de feixe

→ Menor resolução de imagem no SEM

→ Altera pouco a resolução dos mapas de orientação

→ Maior a potência incidente sobre a superfície

→ Maior número de electrões retrodifundidos

→ Menor tempo de aquisição de um padrão (muito importante)

Detector EBSD (câmara de video)

• Binning

Corresponde à integração de pixels da câmara com objectivo de aumentar a intensidade do padrão à custa de alguma perda de resolução.

Binning	Resolução do padrão (pxs)
1x1	1200 x 1000
2x2	600 x 500
4x4	300 x 250
8x8	150 x 125

Exemplo para uma câmara com resolução 1200x1000

1x1

Detector EBSD (câmara de video)

Ganho

Quanto maior o ganho:

→Mais ruído no padrão

→Menor o tempo de exposição

Tempo de exposição Quanto maior o tempo de exposição: → Menor ruído no padrão (menor ganho) → Menor o tempo de exposição → Especialmente importante para OIM

Exposição de 0.45s

Exposição de 0.03s

Detector EBSD (câmara de video)

- Processamento dos padrões
 - Operações sobre a imagem digital do padrão com o objectivo de o melhorar.
 - \rightarrow Background subtraction
 - \rightarrow Dynamic Background subtraction
 - \rightarrow Median smoothing

- \rightarrow Normalize intensity
- → Sharpen

Background Subtraction:

Padrão sem correcção

Fundo

Padrão com subtracção do fundo

Objectivo Geral: Obtenção de superfície plana que preserve a sua estrutura cristalina

- Preparação mecânica
- Fractura ou clivagem
- Polimento mecânico

Acabamento final de superfícies

- Polimento químico
- Polimento electrolítico
- Polimento iónico

Polimento iónico com Ar

Profundidade de deformação reduz-se com utilização de abarsivos mais finos

2. Proc. experimentais: Preparação de amostras

Imagens de SEM obtidas nas fases de desbaste e polimento de uma amostra de Cu

Efeito de carga

- Resulta do bombardeamento da superfície não-condutora pelos electrões do feixe
- Reduz a qualidade da imagem ou pode mesmo impedir a sua aquisição
- Provoca desvios no feixe de electrões originando efeito de drift nas imagens
- Reduz a qualidade dos padrões obtidos (se existirem)
- Como resolver: <u>Revestindo com filme condutor ou Analisando em Low-Vacuum</u>

Imagem SE de cabelo humano com efeito de carga (esquerda) e sem efeito de carga (direita) Mapa OIM com deriva (drift)

Efeito de carga: Revestimento da superfície com filme condutor

Efeito de carga: Análise EBSD em modo Low-vacuum

- Resolve problema do efeito de carga
- Reduz a qualidade dos padrões
- Efeito de carga praticamente desaparece com pressão 30Pa

1. Fundamentos da técnica EBSD

(SEM: Radiações de interesse para EBSD; Padrões de Kikuchi: Formação e Indexação; Sistemas de referência)

2. Procedimentos experimentais

(Condições experimentais; Calibração; Preparação de amostras; Efeito de carga)

3. Limitações 🗡 💳

(Resolução espacial; Topografia da amostra; Composição química)

Metodologias de análise 4.

(Análise Pontual; Análise OIM)

Análise OIM: Representação e análise de dados 5.

Resolução espacial em EBSD

 Resolução espacial é limitada pela extensão do Volume de Excitação e não pelo diâmetro do feixe incidente.

Resolução espacial em EBSD

- Resolução espacial está limitada pelo volume de excitação (V $_{\rm e}$) e não pelo Spot Size
- \bullet Volume $V_{\rm e}$ depende da composição e da tensão de aceleração
- Devido à inclinação, a resolução é diferente em cada direcção:
 - δ_x Resolução transversal (TD)
 - δ_y Resolução longitudinal (RD)
 - δ_z Resolução em profundidade (ND)
- Valores limite:
 - $\delta_x \approx 20 nm$
 - $\delta_y \approx 3 \ge \delta_x \approx 60 nm$
 - $\delta_z \approx 20 nm$

Volume de excitação assinalado para uma amostra inclinada.

3. Limitações: Outras limitações

Topografia da amostra

• Efeitos de sombra provocados pela topografia da amostra.

Composição química (EDS)

- Por EDS não são detectados os elementos H, He, Li, e é pouco sensível ao Be, B e N.
- Nas condições experimentais típicas de EBSD (amostra inclinada) a análise EDS é menos rigorosa.
- Dificuldade de obter a composição química com rigor.

Pseudo-simetria dos padrões

- Erros na distinção de simetrias de rotação de ordem *n* com simetrias de ordem 2*n*
- Parâmetros de rede próximos entre estruturas semelhantes (p. ex. tetragonal e ortorrômbico) podem resultar em padrões indistinguíveis.

1. Fundamentos da técnica EBSD

(SEM: Radiações de interesse para EBSD; Padrões de Kikuchi: Formação e Indexação; Sistemas de referência)

2. Procedimentos experimentais

(Condições experimentais; Calibração; Preparação de amostras; Efeito de carga)

3. Limitações

(Resolução espacial; Topografia da amostra; Composição química)

4. Metodologias de análise 🦛

(Análise Pontual; Análise OIM)

5. Análise OIM: Representação e análise de dados

Método de análise pontual referenciada a uma imagem de SEM

- Determinação da composição química (EDS)
- Caracterização pontual da estrutura cristalina
- Determinação dos parâmetros de rede

• Determinação da orientação do cristal no referencial da amostra

Imagem SE obtida na superfície de um latão. Pontos de análise assinalados.

Espectros EDS obtidos nos pontos P1 e P2 assinalados na imagem.

10

10

Padrões de Kikuchi obtidos em cada ponto de análise e com indexação assinalada.

	Ponto P1	Ponto P2
Composição química ¹	Cu _{0.64} Zn _{0.36}	
Sistema cristalográfico ²	Cúbico	
Rede de Bravais ²	Cúbica de faces centradas	
Grupo de simetria espacial ²	F m -3 m	
Parâmetro de rede ³	3.32 Å	3.66 Å
Parâmetro de rede ²	3.696 Å	
Orientação ³ Referencial da amostra Âng. Euler: (φ ₁ , Φ, φ ₂)	180.8°, 151.1°, 230.3°	335.5°, 127.8°, 333.3°

¹ Obtido por EDS e confirmado pela base de dados

² Retirado da base de dados

³Obtido por EBSD

Indexing Statt Interactive Hough Phase Simulation Grain Size

Aquisição automática de dados - OIM (Orientation Imaging Microscopy)

Villen Stage x, y, Z C:06 C Pattern i Banda IT Hough india PHI=119.0* 0162 - 7.0 Progress Data | Pole Figure Crystal Percent Complete 72% Stop 10 um Pause Time Per Point Points Per Second 0.025 seconds 39.5 poerts Active Scale Scan information Point completed Points remembra 51117 19457 SEM Magnitication 5031 Scan Mode: Hexagonal Grid Start x -18.895 Starty: -15,217 Estimated Time Remaining Sue x 37.258 B.2 minutes Scey: 36:795 Ship size: 0.15 microm Number of points: 70574

- Aquisição e indexação automática numa área extensa de análise
- Permite caracterização de propriedades estruturais do material (microestrutura)
- Tipos de varrimento: "Beam scan" ou "Stage Scan"
- Possibilidade de re-indexação posterior

4. Metodologias de análise: Análise OIM

Como são construídos os grãos num mapa OIM?

 Definidos por comparação de cada ponto com os pontos vizinhos

• Critério:

Se desorientação entre pontos contíguos <u>for maior</u> que "**Grain Tolerance Angle**", então os pontos pertencem a grãos diferentes.

- "Grain Tolerance Angle" é definido pelo utilizador. Valor de referência são 5º.
- Parâmetro "Minimum Grain Size" é também definido pelo utilizador e define o tamanho mínimo (em número de pontos do mapa) para que seja considerado um grão.

1. Fundamentos da técnica EBSD

(SEM: Radiações de interesse para EBSD; Padrões de Kikuchi: Formação e Indexação; Sistemas de referência)

2. Procedimentos experimentais

(Condições experimentais; Calibração; Preparação de amostras; Efeito de carga)

3. Limitações

(Resolução espacial; Topografia da amostra; Composição química)

4. Metodologias de análise

(Análise Pontual; Análise OIM)

Caracterização de Grãos de Fronteiras de Grão

Mapa de grão obtido para uma amostra de latão.

Caracterização de Grãos de Fronteiras de Grão

Mapa de grão identificado por cor (AT=5º), com perfil de desorientação relativa no interior do grão assinalado no canto inferior direito

Caracterização de Grãos de Fronteiras de Grão

Mapa de grão obtido para uma amostra de latão.

Amostra de Al laminado - EDAX

Imagem dos grãos codificados por cor.

Distribuição de orientações medidas em relação à horizontal da imagem (esq) e no sentido dos ponteiros do relógio.

Amostra de Al laminado - EDAX

Imagem dos grãos codificados por cor.

Distribuição da desorientação média entre pontos pertencentes ao mesmo grão.

Amostra de Al laminado - EDAX

Imagem dos grãos codificados por cor.

Distribuição de forma dos grãos (eixo menor/eixo maior).

Amostra de Latão

Realce dos pontos da imagem com desorientação codificada em escala de cor (0º azul até 15º a vermelho).

15 deg

5. Análise OIM: Representação de Texturas

Figuras de pólos discreta (esq.) e contínua (dir.) para a direcção cristalográfica <111>, numa amostra de Al produzido por laminagem

Inverse Pole Figure (IPF): A cor representa a direção do cristal que está alinhada com a direção normal à superfície, de acordo com a legenda de cores. As rotações no plano não são representadas!

OLUCIONAL CONTRACTOR

Sugestões de leitura

Dectron Backscatter Diffracti

A. Schwartz, M. Kumar, B. Adams, "Electron Backscatter Diffraction in Materials Science", Kluwer Academic/Plenum Publishers (2000)

Nova edição

A. Schwartz, M. Kumar, B. Adams, "Electron Backscatter Diffraction in Materials Science", 2nd Ed, **Springer** (2009)

O. Engler, V. Randle, *"Introduction to Texture Analysis: Macrotexture, Microtexture and Orientation Mapping", 2nd Ed, CRC Press, Taylor & Francis Group (2009)*