

2nd SEMAT/UM Workshop on Advanced Characterization of Materials

Wide- and Small Angle X-ray Measurements with Bruker AXS NanoStar Testing Station

Zlatan Denchev, DEP- UM

- **1.** Basic concepts of the X-ray analysis.
- 2. Bruker AXS NanoStar with HiStar 2D detector construction, advantages, analytical possibilities.
- 3. The use of 2D WAXS and SAXS in various areas of materials science- examples.
- 4. The use of Bruker NanoStar in SEMAT organization issues.

5. Discussion

Absorption of X-rays: visualizing the big invisible

Scattering of X-rays: visualizing the submicrometric structure

Polymers

- **Biological materials**
- Metals, alloys
- Nanopowders
- Solutions with sufficient scattering volume

Patterns caused by the nano-structure but not depicting the sample morphology directly !

Combination of real X-ray images and patterns

- 1. High-frequency (10¹⁶ 10¹⁸ Hz) electromagnetic radiation caused by a change in the momentum of a charged particle (e.g., electron) by:
- Bombarding a metal target by high-speed electrons (vacuum tube);
- Accelerating electrons in vacuum and suddenly changing their path (synchrotron);
- Decelerating electrons by special coatings (old TV screens);
- Nuclear explosions and cosmic events.
- 2. In agreement with the wave-photon dualism, X-rays can be considered either as packages of waves or as flux of photons.
- 3. X-ray have extremely high penetration ability. Most materials (with the exception of the heaviest metals) are transparent for them.

What are X-rays?

- 1. High-frequency (10¹⁶ 10¹⁸ Hz) electromagnetic radiation caused by a change in the momentum of a charged particle (e.g., electron) by:
- Bombarding a metal target by high-speed electrons (vacuum tube);
- Accelerating electrons in vacuum and suddenly changing their path (synchrotron);
- Decelerating electrons by special coatings (old TV screens);
- Nuclear explosions and cosmic events.
- 2. In agreement with the wave-photon dualism, X-rays can be considered either as packages of waves or as flux of photons.
- 3. X-ray have extremely high penetration ability. Most materials (with the exception of the heaviest metals) are transparent for them.

Setups for X-ray studies:

Setups for X-ray studies: WAXS and SAXS

Bruker AXS NanoStar – Key Components

Bruker AXS NanoStar – Key Components

Distance 1st – 2nd pinhole: 92.5 cm Distance 2nd – 3rd pinhole: 42.8 cm

(3-pinhole geometry based on an idea by Prof. Jan Skov Pedersen, Univ. Aarhus, DK)

Bruker AXS NanoStar – Goebel Mirror

Goebel Mirror: producing low divergence, parallel X-ray beams

- graded multilayer (e.g. W/Si or Ni/C)
- bent or pre-figured parabolically for parallel beam
- bent elliptically for focussed beam

Distance 1st – 2nd pinhole: 92.5 cm Distance 2nd – 3rd pinhole: 42.8 cm

(3-pinhole geometry based on an idea by Prof. Jan Skov Pedersen, Univ. Aarhus, DK)

Bruker AXS NanoStar – Resolution and Intensity

Hendricks J. Appl. Cryst. 1978)

Bruker AXS NanoStar – Maximum Resolution

q denotes the scattering range in the reciprocal space R_{max} gives the resolution limits of the NanoSTAR in real space

Bruker AXS NanoStar – Resolution and SD

650 mm
MAXS

Bruker AXS NanoStar – Resolution and SD

■ 106 cm

SAXS

Typical resolution for the NanoSTAR with Cu radiation:

Distance Sample – Detector	Accessible q-range	Attainable Resolution R _{max}
1060 mm	q _{min} = 0.008 Å⁻¹	R _{max} = 785 Å
650 mm	q _{min} = 0.01 Å ⁻¹	R _{max} = 628 Å
100 mm	0.07 Å ⁻¹ – 3.00 Å ⁻¹	3 Å - 200 Å
40 mm	q _{max} = 2.8 Å ⁻¹	R _{min} = 2 Å

Bruker AXS NanoStar – Sample Environment

Distance 1st – 2nd pinhole: 92.5 cm Distance 2nd – 3rd pinhole: 42.8 cm

Bruker AXS NanoStar – Sample Environment

ideal sample thickness:

$$t = e^{-\mu d} = I_s / I_0$$

$$d_{ideal} = \frac{1}{\mu}$$

sample	typical thickness
polymers	2 mm
H ₂ O solutions	1 mm
wood	200 μm
metals	30 μm

Bruker AXS NanoStar – Sample Environment

A microliter syringe is

Quartz Cuvettes

Sample holder for controlled heating/cooling between *30-300ºC*

Bruker AXS NanoStar – Structure investigations in polymers

Bruker AXS NanoStar – Structure investigations in polymers

X-ray experiments: WAXS and SAXS

Orders of magnitude in polymer nanostructure

Figure 7. Schematic diagram of the spherulitic morphology of semicrystalline polymers. (Adapted from Broadhurst and Davis [17] and Lovinger [204].)

Kepler & Anderson, Adv. In Physics, 1992, 41, 1, 1-57

Orders of magnitude in polymer nanostructure

Lamellar structure and orientation – 2D SAXS

Orders of magnitude in polymer nanostructure

Crystallite structure and orientation - WAXS

Models of lamellar nanostructure

For more information see the index page of Prof. N. Stribeck at http://www.chemie.uni-hamburg.de/tmc/stribeck/focus/index_e.html

Bruker AXS NanoStar X-ray data station

- Summary

In WAXS mode:

(+) all what a normal diffractometer does plus studies related to orientation of the crystalline phase.

(-) Limited 2^O range.

In SAXS mode

(+) particles size and size distribution;

(+) particles shape (spherical, cubic, cylindrical...)

(+) orientation

(+) main distance between particles....

(-) Skills and additional software needed for rigorous data evaluation.

Some practical hints for the users:

1.Changing the setup:

- 2 weeks for WAXS setup, 2 weeks for SAXS setup
- Allow 1 entire day for the change.

2. "Machine studies":

-Allow 2 more days per month for optical system adjustments, calibrations, machine testing and maintenance.

3. Booking the equipment:

- In a weekly users' meeting