

Spatially specific techniques

- Synchrotron Radiation (H. F. Poulson & D. Juul-Jensen)
 Low Spatial Resolution (5µm), moderate angular resolution (1-2°), Good statistics, <u>3-d information</u>, difficult mathematical reconstruction, poor availability
- Polarized Light (R. Heilbronner)
 Not very quantitative, <u>inexpensive</u>, good accessibility, 2-d, limited materials
- TEM Diffraction (Kikuchi patterns, Spot patterns, CBED)
 <u>High spatial resolution</u>, good accuracy, extremely limited area, difficult sample preparation, as of yet limited automation, some 3-d information, poor statistics
- Electron Channeling
 Poor spatial resolution (5-10μm), moderate accuracy (0.5°), 2-d, no automation so poor statistics.
- Kossel X-Ray Diffraction
- Poor spatial resolution (10μm), <u>good accuracy (0.1°)</u>, 2-d, limited materials, no automation so poor statistics.
 Electron Backscatter Diffraction
 - Good spatial resolution (~20m), good angular resolution (~0.5°), reasonable statistics with automation, good availability, 2-d

Values as of 2007

EDAX

Historical overview

- 1928 Kikuchi First reported EBSPs
- · 1972 Venables et. al. EBSPs in the SEM
- · 1982 Dingley Computer-assisted indexing
- · 1991 Wright et. al. Fully automated system
- 1993 Michael et. al. Phase ID
- · 2000s TSL Chemically assisted phase differentiation

EDAX

Crystallo	graphic Space Group
Point Groups	Symmetry operations which leave the crystal in a position indistinguishable from the position prior to the operation. Such operations (e.g. rotations, reflections and inversions) have the property that at least one point of the object was not moved by the operation.
Translations	A crystal may be regarded as an infinite lattice; a combination of atoms that are repeated over and over throughout three-dimensional space. Lattice translations satisfy the definition of symmetry operations, since the crystal is indistinguishable after such translations.
Screw Axes	The operation that characterizes a screw axis, denoted by $n\pi$, is a rotation of $2\pi/n$ radians followed by a translation of π/n in the direction of the axis.
Glide Planes	The combination of the motions of reflections and translation gives a glide plane. The operation consists of reflection in a plane followed by translation. For example, if the glide is parallel to the a axis, then the symbol for the glide plane is a and the operation is reflection in the plane and translation by a/2.
	E

Analysis Tools

Orientation Imaging Microscopy: Imaging and Quantification of Crystal Related Features

- 1. Grain size, orientation, and shape
- 2. Crystal directions and orientations
- 3. Boundary type and misorientation distribution
- 4. Plastic deformation
- 5. Texture (PF, IPF, ODF, MDF)
- 6. Spatial distribution
- All measurements are linked to their positions
- ➔ This allows advanced interactive analysis of the distribution of microstructural features

EDAX

Application – nanowires – summary

- Do all wires have a gold "cap" ?
 > No, there are anomalous wires without gold
- Is there a special orientation relation between the wires and the gold ?
 Yes
- Are Si nanowires epitaxial on the substrate ?
 Yes

EDAX

