Orientations and misorientations

Orientation (g):

The orientation of the crystal lattice with
respect to some reference frame; usual a
frame defined by the processing or sample
geometry.

Misorientation (Ag):

The orientation of one crystal lattice with
respect to another. Some times termed the
orientation difference or disorientation.
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Reference frame
RD = X = [100]
TD=Y =[010]
ND = Z = [001]
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TD = Transverse Diraction

RD = Rafarence Diraction
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Orientations
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Euler angles (1, ®, 92):
Rotations between reference coordinates and crystal coordinates

{hkl}<uvw>
Orientation defined by plane {hkl} // specimen surface and
crystal direction <uvw> // RD (X)
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Euler angles

OIM follows the formalism of Bunge (Texture Analysis in
Materials Science, Butterworths, 1982).

The three Euler angles (g,, ¥, ¢,) describe the three rotations
that will bring the sample reference frame (S) into

Euler Angles coincidence with the crystal reference frame (C).

In a simple cubic case these three rotations are those that will

bring the specimen coordinate system onto the crystal

coordinate system:

-1- rotation around Zs: to bring RD (X;) into X¢-Y¢ plane,

-2- rotation around X’s: to bring TD (Y’s) into X¢-Y plane,
and ND (Z’s) parallel to Z., and

-3- rotation around Z’s: to bring RD (X’s) and TD (Y”’)
parallel to X and Y¢ with ND (Zs) parallel to (Zc).

The rotations for Bunge’s Euler angles (default) are shown on
the left.

The Roe and Kocks Euler angles are similar. The relationship
between these angles is as follows:

Bunge: (9, P, ¢,)
Roe: (¥,0,8) = (p,-90° &, 90°-¢,)
Kocks:  (9,0,4) =(,~90°®,90°+¢,)
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Euler angles

PASSIVE: Orientations are defined as the rotation(s) needed to bring the sample

ACTIVE:

reference frame into coincidence with the crystal reference frame.
This is the definition used by Bunge which is used in OIM.
Orientations are defined as the rotation(s) needed to bring the crystal
reference frame into coinci with the ple reference frame.

Euler Angles

Euler Space
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Orthonormal transformations

Transformations (M) from the crystal basis to the orthonormal basis:
P = [1 - cos?n. - cos?p - cos?y + 2 cosa cosp cosy]'?

(xyz)=M (hkl) (hkl) = M (xyz)
J - cos B
asinB 0 anB asinp 0 acosp
cosacosP-cosy sinB cosPcosy-cosa acosy-cosacosP) bP
aPsinp bP cPsinp sin sinp
) 0 RE 0 0 c
c
(xyz)=M [uvw] [uvw]=M (xyz)
. b (cos Y- cos &cos B) 1 cos acos B - cos Y
asinp sinB 0 asnp aPsinp 0
bpP sin
0 0
0 sinp 0 bP
acosp bcos & c -cosp  cosPeosy-cosa 1
csinp csinp c
If using Miller-Bravais Indices (VW] ie. If using Miler-Bravais Indices ([uvtw] ie.
for hexagonal or trigonal symmetry) then for hexagonal or trigonal symmetry) then
u=20'+v' u'= (2u- W3
v=2veu v=(2v-u3
w=w w=w
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Axis-angle pair

Axis/Angle Definition

Axis/Angle Space

45 degrees sbaut [100]
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Rodrigues vector

Rodrigues vector definition Rodrigues space
z R,

<uviv>,

R=tani (m/z)ﬁ

Ys
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Conversions

Euler Angles

Bunge (@), @4

Ree: (¥Q@ (@ -90°, B90°-gp)
Kocks (@@ @ - 90°, @I0°+(P)
Matrix

cospoosgy —singjsingy cosdd  sing] cos 3 +cosgpungy cosh  sngy sindh
£= | —congqsingy —s g ccaqy osD —singsingy +e0xgg cos gy cosD cosgysind

sn grind —cosgqsind cosd
Axis Angle
rotation sbout the axisd = [d;, dy, d3]

A —d})cos@+d} dd,(1—cos @ +d sn@ dd;(1—cos @) —d, sin@
g= |ddy( —cosd—dysin®  (—dDcosw+d]  dyd;(1—cos) +d, sin )|
dyd, (1 —0sch +d, sin®) dyd (1—cos@) —d s @ (1 —d}) coscdrd]

2cos@=Tracs() —1 =& +8n + 83 -1

Rodrigues Vector

= o = =
R =dtm 2 where fil= @ va+a =

(hki)[uvw]

h=nsig sing =m(g,, -g,)
k=ncosp,sid=mg, -g,)
I=neosd=mig, - g.)
re=n'(cosgcos(g —sng sing cos @)

v=n{—cosqg sin g —sin gy cosgp cosd)

Sagend
!

Ty

k
cosgp =
Vh? k2

cos®

sing, = L
R+

B4k 12

" w
snp=________
@ v !

Crystal symmetry

Crystal symmetry: The set of rotations (a point group) which when applied to the
crystal lattice rotate the lattice into an orientation indistinguishable from the original

orientation. For example consider the symmetries of a cube:

po1]

90°,180°, 270°
S iy

90°, 180°, 270°
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120°, zau":(

_%_ 1]
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[ri0] pot] pr1)

[ [1T1)
[ri1] [117)

Crystal symmetry

M ically if an ori 1 is repr

d as a matrix then the symmetry elements

of the point group can be represented as a set of matrices (L):
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The mathematical relation can then be written as: g°® = Lg where g¢ is an orientation
symmetrically equivalent to the original orientation, g. For misorientations the relation

is given as follows:
fe=g,g)
Mg =Lg,Lg)"
Pt =
A =L,AeL,

85 @TLT) but LT is a member of the symmety point group
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Sample symmetry

Sample symmetry: Sample symmetry arises from symmetry in the material processing. It is
sometimes referred to as statistical symmetry. Consider for example the rolling of sheet
metals. This forming operation has orthotropic symmetry. Mathematically if an orientation is
represented as a matrix then the symmetry elements of the point group can be represented as
a set of matrices (R):

The term statistical symmetry is probably most accurate as what is
implied by sample symmetry is that there are statistically as many
grains in one orientation as in a symmetrically equivalent one.

For example the following orientations (in 2-d) would appear with the same frequency:

In 3D the following orientations (S) would appear with the same frequency in rolled sheet:

Ce0Q®

The mathematical relation can then be written as: g° = g R; where g¢ is an orientation
symmetrically equivalent to the original orientation, g

" EDAX™

Fundamental region

Because of symmetry the orientation space can be reduced to a fundamental region
or asymmetric domain containing only unique orientations (i.e. no symmetrically
equivalent orientations). The following examples are for cubic crystal symmetry.

Axis/Angle Space Rodrigues
(misorientations) Space

Euler Space

Pole figures

Consider a cubic crystal in a rolled sheet sample with "laboratory” or "sample" axes
as shown below.

Normal Direction

Transvers e Direction

Rolling Direction

The Pole figure plots the orientation of a given lattice plane normal (pole) with
respect to the sample reference frame. The example below is a (001) pole figure.
Note the three points shown in the pole figure are for three symmetrically equivalent
planes in the crystal.

EDAX™
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Planes, poles, and directions

(111)

(111) 1]

[111]

§
Al

Pole figures: negative hemisphere

Open circles can be used to distinguish points in the negative
hemisphere from points in the positive hemisphere in the
same pole figure.

Positive (upper)
hemisphere

Negative (lower)
hemisphere

Pole figures - single orientation

ND A pole figure shows the orientation of a

given plane normal (a “pole”) with respect

to the sample axes.
' D
010

RD
(001) Pole figure {100} planes in a
(should actually be written as {001} because cubic crysml
all symmetric equivalents are included) —
" EDAX

Orientation representations




Pole figures - single orientation

ND (0001)
; m
v (1100)
(0110)
RD
" TD
RD
(0001) Pole figure (0110) Pole figure
© EDAX™

Pole figures - single orientation

ND
{110} Planes

' T
RD
Only poles in the positive hemisphere are
plotted. (For those at the edge, essentially a
. half is plotted for both the “positive” and
(110) Pole figure “negative” sides of the plane.)
» EDAX™

Pole figures - single orientation

ND
' ™ {111} Planes
RD Ah 7
TD
RD
(111) Pole figure
z EDAX™
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Inverse pole figures

Nermal Dirsetion
Consider a cubic crystal in a rolled sheet ND}
sample with "laboratory” or "sample
axes as shown.

Tansuerse Direction
> (10}

Rolling Direction

The Inverse Pole Figure plots the orientation of a given specimen direction (typically
the sample normal) with respect to the crystal axes.

There are two ways of looking at inverse pole figures:
1) Which crystal axis is aligned with a specified sample axis.
2) The orientation of the specified sample axis with respect to the crystal axes.

The example below is a normal direction inverse pole figure. In the full inverse pole
figure all symmetrically equivalent points are shown.

11

The ND sam-
ple direction
relative to the
crystal axes

Unit Triangle

001 101

2 EDAX™

Inverse pole figures - single orientation

An inverse pole figure shows the pole that is parallel to a given sample direction

of crystal sy y only a “unit triangle” is needed instead of a full circle.
The triangle ch from sy y to sy

y
ND ND
; TD é
TD
RD RD

(111) (1010)

o 2w g i e
[001] [100] [o10] :\

(0001) (2110)

(001) (101)

Inverse pole figures

11
Normal Direction ND
Z T
©02)
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00 101
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X-RD
001 101

2 EDAX™

Orientation representations




Comparison - three orientations

z T Normal Direction

©002) (

[001]
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(001) (101)
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(001)

211

Comparison - three orientations

But in typical analysis of EBSD data, all points are shown in a single color so you
can’t tell which points should be grouped together. However, one of the powerful
capabilities of OIM Analysis is the ability to highlight individual grains in a map
and then see the corresponding highlighting in the pole figure.

0, A omat imcion

Set of orientations

Idealized [100] Fiber Texture

[ | 220303 | |

Experimental [100]
Fiber Texture
(Discrete Plot)

Experimental [100]
Fiber Texture
(Texture Plot)

EDAX™

Orientation representations




Rolling texture

[100]

Br
MA« To1
-3 100
Ideal orientations (or
texture components)
for rolled fcc materials

Other textures can be much more complicated such as a rolling texture. The following
is an example for rolled copper. Note the peak at (110) in the normal direction inverse
pole figure and the peak at (111) in the reference direction inverse pole figure. This
suggests that the (110)[111] orientation is an important one in this material.

[010]
11

RD
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Pole figures: crystal & sample symmetry

TD
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Projections

Stereographic Equal Area Equal Angle
s dg)

Stereographic Equal Area Equal Angle
-
™ m

® Staracgraphi

® Equal Area RD RD RD
® Equsl Angle

RD
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Orientation representations
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Euler space sections

Comparison

111 Fiber Texture
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Comparison

Rolled Aluminum Sheet - Discrete Plots

Orientation representations

11



References

Fora iption of the ion of orientation, i in terms of Euler angles, and the
mathematics behind the harmonic expansion of the ODF see:

H. Bunge (1982). Texture Analysis in Materials Science. Butterworths: London.
For a general overview of textures in metals see:

1. Dillamore and W. Roberts (1965). Preferred orientation in Wrought and Annealed Metals. Metallurgical
Reviews 10, 271-380

For a general overview of textures in hexagonal materials see the first few chapters of:

E. Tenckhoff (1988). D i i Texture and Anis in Zir ium and Zircaloy. ASTM:
Philadelphia.

A good place to become familiar with the general body of literature in texture analysis is in the proceedings of
the International Conference on Texture of Materials ICOTOM) held every three years.

Electron Backscatter Diffraction in Materials Science, 2" edition P

edited by o cataifctin
Adam J. Schwartz - Lawrence Livermore National Laboratory, CA, USA nblatel Sdecs
Mukul Kumar - Lawrence Livermore National Laboratory, CA, USA
Brent L. Adams - Brigham Young University, Provo, UT, USA

Kluwer Academic/Plenum Publishers, 2009

Orientation representations

12



