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Crystallographic orientation

22

Orientation (g):

The orientation of the crystal lattice with 

respect to some reference frame; usual a 

frame defined by the processing or sample 

geometry.

Misorientation (∆g):

The orientation of one crystal lattice with 

respect to another. Some times termed the 

orientation difference or disorientation.

Orientations and misorientations
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Reference frame

X

Y
Z

RD = X = [100]

TD = Y = [010]

ND = Z = [001]
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{hkl}<uvw>

Euler angles
(ϕϕϕϕ1, ΦΦΦΦ, ϕϕϕϕ2)

Orientations

Euler angles (ϕ1, Φ, ϕ2ϕ1, Φ, ϕ2ϕ1, Φ, ϕ2ϕ1, Φ, ϕ2):

Rotations between reference coordinates and crystal coordinates

{hkl}<uvw>

Orientation defined by plane {hkl}  // specimen surface and 
crystal direction <uvw> // RD (X)

(0,0,0)

(90,45,0)

(149,54,45)

X

Y

Z
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Euler angles
OIM follows the formalism of Bunge (Texture Analysis in 

Materials Science, Butterworths, 1982).

The three Euler angles (ϕϕϕϕ1111, Φ, ϕ, Φ, ϕ, Φ, ϕ, Φ, ϕ2222) describe the three rotations 
that will bring the sample reference frame (S) into 
coincidence with the crystal reference frame (C).

In a simple cubic case these three rotations are those that will 
bring the specimen coordinate system onto the crystal 

coordinate system:

-1- rotation around ZS:  to bring RD (XS) into XC-YC plane,

-2- rotation around X’S: to bring TD (Y’S) into XC-YC plane,

and ND (Z’S) parallel to ZC,  and

-3- rotation around Z’S: to bring RD (X’S) and TD (Y’’S)

parallel to XC and YC with ND (Z’S) parallel to (ZC). 

The rotations for Bunge’s Euler angles (default) are shown on 

the left.

The Roe and Kocks Euler angles are similar. The relationship 
between these angles is as follows:

Bunge: (ϕϕϕϕ1111, Φ, ϕ, Φ, ϕ, Φ, ϕ, Φ, ϕ2222)
Roe: (Ψ, Θ, ΦΨ, Θ, ΦΨ, Θ, ΦΨ, Θ, Φ) = (ϕϕϕϕ1111 −−−− 90909090°, Φ, 90, Φ, 90, Φ, 90, Φ, 90°−−−− ϕϕϕϕ2222)
Kocks: (Φ, Θ, φΦ, Θ, φΦ, Θ, φΦ, Θ, φ) = (ϕϕϕϕ1111 −−−− 90909090°, Φ, 90, Φ, 90, Φ, 90, Φ, 90°+ ϕ+ ϕ+ ϕ+ ϕ2222)
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Euler angles

PASSIVE: Orientations are defined as the rotation(s) needed to bring the sample
reference frame into coincidence with the crystal reference frame.
This is the definition used by Bunge which is used in OIM.

ACTIVE: Orientations are defined as the rotation(s) needed to bring the crystal
reference frame into coincidence with the sample reference frame.
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Orthonormal transformations

Transformations (M) from the crystal basis to the orthonormal basis:
P = [1 - cos2αααα - cos2ββββ - cos2γγγγ + 2 cosαααα cosββββ cosγγγγ]1/2

If using Miller-Bravais Indices ([u'v't'w'] i.e.
for hexagonal or trigonal symmetry) then

u = 2u' + v'
v = 2v' + u'
w = w'

a sin ββββ

0

a cos ββββ b cos αααα

b P

sin ββββ

b (cos γγγγ - cos αααα cos ββββ)

sin ββββ
0

c

0

1

a sin ββββ

cos αααα cos ββββ - cos γγγγ

a P sin ββββ

0

0

sin ββββ

bP

0
1

c

- cos ββββ

c sin ββββ

cos ββββ cos γγγγ - cos αααα

c P sin ββββ

0

1

a sin ββββ

-cos ββββ

c sin ββββ

0

0

1

c

sin ββββ

b P

cos αααα cos ββββ - cos γγγγ

a P sin ββββ

cos ββββ cos γγγγ - cos αααα

c sin ββββ

If using Miller-Bravais Indices ([u'v't'w'] i.e.
for hexagonal or trigonal symmetry) then

u' = (2u - v)/3
v' = (2v - u)/3
w' = w

a sin ββββ

0

a (cos γγγγ - cos αααα cos ββββ)

sin ββββ
b cos αααα

a cos ββββ

c0

0

b P

sin ββββ

(xyz) = M (hkl)

[uvw] = M (xyz)

(hkl) = M (xyz)

(xyz) = M [uvw]
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Axis-angle pair

99

Rodrigues vector

Rodrigues vector definition

R3

R1 R2

R = tan( /2) <uvw>
||uvw||

<uvw>
||uvw||

Rodrigues space
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Conversions

1111

Crystal symmetry: The set of rotations (a point group) which when applied to the 

crystal lattice rotate the lattice into an orientation indistinguishable from the original 

orientation. For example consider the symmetries of a cube:

Crystal symmetry

1212

Mathematically if an orientation is represented as a matrix then the symmetry elements 

of the point group can be represented as a set of matrices (Li):

The mathematical relation can then be written as: ge = Lig where ge is an orientation 
symmetrically equivalent to the original orientation, g. For misorientations the relation 

is given as follows:

Crystal symmetry
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Sample symmetry: Sample symmetry arises from symmetry in the material processing. It is 

sometimes referred to as statistical symmetry. Consider for example the rolling of sheet 

metals. This forming operation has orthotropic symmetry. Mathematically if an orientation is 

represented as a matrix then the symmetry elements of the point group can be represented as 

a set of matrices (Ri):

The term statistical symmetry is probably most accurate as what is

implied by sample symmetry is that there are statistically as many

grains in one orientation as in a symmetrically equivalent one.

For example the following orientations (in 2-d) would appear with the same frequency:

The mathematical relation can then be written as: ge = g Ri where ge is an orientation 

symmetrically equivalent to the original orientation, g

Sample symmetry

In 3D the following orientations (S) would appear with the same frequency in rolled sheet:

1414

Because of symmetry the orientation space can be reduced to a fundamental region 

or asymmetric domain containing only unique orientations (i.e. no symmetrically 

equivalent orientations). The following examples are for cubic crystal symmetry.

Fundamental region

*The unit triangle actually shrinks with increasing misorientation beginning at 45°.
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Consider a cubic crystal in a rolled sheet sample with "laboratory" or "sample" axes 

as shown below.

The Pole figure plots the orientation of a given lattice plane normal (pole) with 
respect to the sample reference frame. The example below is a (001) pole figure. 
Note the three points shown in the pole figure are for three symmetrically equivalent 

planes in the crystal.

Pole figures
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Planes, poles, and directions

(111)

[111]

(111)

[111]

(111)

1717

Positive (upper)

hemisphere

Negative (lower)

hemisphere

Open circles can be used to distinguish points in the negative 

hemisphere from points in the positive hemisphere in the 

same pole figure.

Pole figures: negative hemisphere

1818

Pole figures – single orientation

{100} planes in a 
cubic crystal

(001) Pole figure

(should actually be written as {001} because

all symmetric equivalents are included)

(001)

(010)

(100)

(100)

(001)

(010)

A pole figure shows the orientation of a 

given plane normal (a “pole”) with respect 
to the sample axes.

ND

TD

RD

RD

TD
ND



Orientation representations 7

1919

ND

TD

RD

Pole figures – single orientation

(0001)

(0110)
(1100)(1010)

(0001) Pole figure

RD

TD
ND

RD

TD
ND

(0110) Pole figure

2020

Pole figures – single orientation

{110} Planes

Only poles in the positive hemisphere are 

plotted. (For those at the edge, essentially a 

half is plotted for both the “positive” and 

“negative” sides of the plane.)

ND

TD

RD

(110) Pole figure

RD

TD
ND

2121

Pole figures – single orientation

{111} Planes

ND

TD

RD

RD

TD
ND

(111) Pole figure
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Consider a cubic crystal in a rolled sheet
sample with "laboratory" or "sample
axes as shown.

The Inverse Pole Figure plots the orientation of a given specimen direction (typically 
the sample normal) with respect to the crystal axes.

There are two ways of looking at inverse  pole figures:
1) Which crystal axis is aligned with a specified sample axis.
2) The orientation of the specified sample axis with respect to the crystal axes.

The example below is a normal direction inverse pole figure. In the full inverse pole 
figure all symmetrically equivalent points are shown. 

Inverse pole figures
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Inverse pole figures – single orientation

Because of crystal symmetry only a “unit triangle” is needed instead of a full circle. 

The triangle changes from symmetry to symmetry

ND

[001]

RD

[100]

TD

[010]

(001) (101)

(111)

An inverse pole figure shows the pole that is parallel to a given sample direction

RD

ND

TD
TD

RD

ND

(0001) (2110)

(1010)

2424

ND

RD

Inverse pole figures

X - RD

Y - TD

Z
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Comparison – three orientations

[001]

(100) (111) (110)

[100]

(001) (101)

(111)

(001) (101)

(111)

X

Y

Z
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Comparison – three orientations

But in typical analysis of EBSD data, all points are shown in a single color so you 

can’t tell which points should be grouped together. However, one of the powerful 

capabilities of OIM Analysis is the ability to highlight individual grains in a map 

and then see the corresponding highlighting in the pole figure.

(100) (111) (110)
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Set of orientations

Idealized [100] Fiber Texture Experimental [100]
Fiber Texture
(Discrete Plot)

Experimental [100]
Fiber Texture
(Texture Plot)
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Rolling texture

Other textures can be much more complicated such as a rolling texture. The following 
is an example for rolled copper. Note the peak at (110) in the normal direction inverse 
pole figure and the peak at (111) in the reference direction inverse pole figure. This 
suggests that the (110)[111] orientation is an important one in this material.

Ideal orientations (or 
texture components) 

for rolled fcc materials
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Pole figures: crystal & sample symmetry

3030

Projections
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Euler space sections

3232

111 Fiber Texture

Comparison

3333

Comparison
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For a description of the representation of orientation, especially in terms of Euler angles, and the 
mathematics behind the harmonic expansion of the ODF see:

H. Bunge (1982). Texture Analysis in Materials Science. Butterworths: London.

For a general overview of textures in metals see:

I. Dillamore and W. Roberts (1965). Preferred orientation in Wrought and Annealed Metals. Metallurgical 

Reviews 10, 271-380

For a general overview of textures in hexagonal materials see the first few chapters of:

E. Tenckhoff (1988). Deformation Mechanisms, Texture and Anisotropy in Zirconium and Zircaloy. ASTM: 

Philadelphia.

A good place to become familiar with the general body of literature in texture analysis is in the proceedings of 
the International Conference on Texture of Materials (ICOTOM) held every three years.
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